\(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2020

Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:

ĐKXĐ: ...

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)

Đặt \(4x+\frac{7}{x}-10=t\)

\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)

13 tháng 4 2020

cảm ơn

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

31 tháng 1 2018

Mở đầu về phương trìnhMở đầu về phương trình

31 tháng 1 2018

Giáo án hả :v Nhìn quen quenn :v

16 tháng 2 2018

điều kiện xác định \(x\ne0\)

ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)

\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)

tới đây bn bấm máy tính nha

16 tháng 2 2018

câu b lm tương tự nha

22 tháng 12 2017

a) ĐKXĐ : 9x2 - 16 # 0

=> ( 3x - 4)( 3x + 4) # 0

=> x # \(\dfrac{4}{3}\); x # \(-\dfrac{4}{3}\)

Vậy,...

b) ĐKXĐ : x2 - 4x + 4 # 0

=> ( x - 2)2 # 0

=> x # 2

Vậy,...

c) ĐKXĐ : x2 - 1# 0

=> x # 1 ; x # -1

vậy,..

d) ĐKXĐ : 2x2 - x # 0

=> x( 2x - 1) # 0

=> x # 0 ; x # \(\dfrac{1}{2}\)

Vậy,...

22 tháng 12 2017

a,\(\dfrac{x^2-4}{9x^2-16}\)

Phân thức trên được xác định \(\Leftrightarrow9x^2-16\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{4}{3}\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)

Vậy...

b,\(\dfrac{2x-1}{x^2-4x+4}\)

Phân thức trên được xác định \(\Leftrightarrow x^2-4x+4\ne0\)

\(\Leftrightarrow\left(x-2\right)^2\ne0\)

\(\Leftrightarrow x-2\ne0\)

\(\Leftrightarrow x\ne2\)

c,\(\dfrac{x^2-4}{x^2-1}\)

Phân thức trên được xác định \(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

Vậy...

d,\(\dfrac{5x-3}{2x^2-x}\)

Phân thức trên được xác định \(\Leftrightarrow2x^2-x\ne0\)

\(\Leftrightarrow x\left(2x-1\right)\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

a: \(=\dfrac{3x}{5\left(x+y\right)}-\dfrac{x}{10\left(x-y\right)}\)

\(=\dfrac{6x\left(x-y\right)-x\left(x+y\right)}{10\left(x-y\right)\cdot\left(x+y\right)}\)

\(=\dfrac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}=\dfrac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

b: \(=\dfrac{7}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\)

\(=\dfrac{7x+2\left(2x-3\right)-x\left(2x+3\right)}{2x\left(2x+3\right)\left(2x-3\right)}\)

\(=\dfrac{7x+4x-6-2x^2-3x}{2x\left(2x+3\right)\left(2x-3\right)}\)

\(=\dfrac{-2x^2-6}{2x\left(2x+3\right)\left(2x-3\right)}=\dfrac{-x^2-3}{x\left(2x+3\right)\left(2x-3\right)}\)

c: \(=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)

26 tháng 1 2017

a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)

\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)

\(\Leftrightarrow\frac{1+3x}{2+x}=1\)

\(\Leftrightarrow1+3x=2+x\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)

\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)

\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)

\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)

\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)

\(\Leftrightarrow-12x^2+60x-36=0\)

\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)

\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)

\(x_2=\frac{5-\sqrt{13}}{6}\)

d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)

(dấu bằng thứ nhất của câu d là dấu cộng à???)

26 tháng 1 2017

ukm

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3