Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)
\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
a)\(\frac{3x+2}{7}=\frac{4x-5}{6}\)
\(\Leftrightarrow\frac{6\left(3x+2\right)}{42}=\frac{7\left(4x-5\right)}{42}\)
\(\Leftrightarrow6\left(3x+2\right)=7\left(4x-5\right)\)
\(\Leftrightarrow18x+12=28x-35\)
\(\Leftrightarrow18x-28x=-12-35\)
\(\Leftrightarrow-10x=-47\Leftrightarrow x=\frac{47}{10}\)
b) \(\frac{x+1}{x+3}=\frac{x+2}{x+4}\left(đkxđ:x\ne-3,-4\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}=\frac{\left(x+2\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=\left(x+2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)-\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+4x+x+4-x^2-3x+2x+6=0\)
\(\Leftrightarrow\left(x^2-x^2\right)+\left(4x+4\right)+\left(4+6\right)+\left(x-3x\right)=0\)
\(\Leftrightarrow4x+4+10-2x=0\)
\(\Leftrightarrow4x+14-2x=0\)
\(\Leftrightarrow2x=-14\Leftrightarrow x=-7\)
a) \(\frac{3x+2}{7}=\frac{4x-5}{6}\)
=> \(6\left(3x+2\right)=7\left(4x-5\right)\)
=> \(18x+12=28x-35\)
=> \(18x+12-28x+35=0\)
=> \(\left(18x-28x\right)+\left(12+35\right)=0\)
=> \(-10x+47=0\)
=> \(-10x=-47\Rightarrow x=\frac{47}{10}\)
b) \(\frac{x+1}{x+3}=\frac{x+2}{x+4}\)
=> (x + 1)(x + 4) = (x + 2)(x + 3)
=> x(x + 4) + 1(x + 4) = x(x + 3) + 2(x + 3)
=> x2 + 4x + x + 4 = x2 + 3x + 2x + 6
=> x2 + 5x + 4 = x2 + 5x +6
=> x2 + 5x + 4 - x2 - 5x - 6 = 0
=> (x2 - x2) + (5x - 5x) + (4 - 6) = 0
=> -2 \(\ne\)0
=> không tìm được x thỏa mãn
hay cách khác : \(\frac{x+1}{x+3}=\frac{x+2}{x+4}\)
=> \(\frac{x+3-2}{x+3}=\frac{x+4-2}{x+4}\)
=> \(1-\frac{2}{x+3}=1-\frac{2}{x+4}\)
=> \(1-\frac{2}{x+3}-\left(1-\frac{2}{x+4}\right)=0\)
=> \(1-\frac{2}{x+3}-1+\frac{2}{x+4}=0\)
=> \(\left(1-1\right)+\left(-\frac{2}{x+3}+\frac{2}{x+4}\right)=0\)
=> \(-\frac{2}{x+3}+\frac{2}{x+4}=0\)
=> \(\frac{-2\left(x+4\right)+2\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}=0\)
=> \(-2x-8+2x+6=0\)
=> \(\left(-2x+2x\right)+\left(-8+6\right)=0\)
=> \(-2\ne0\)
=> không tìm được x thỏa mãn
ĐK \(x\ne0,x\ne-1\)
Ta có \(\frac{x^2-4+\frac{1}{x^2}}{x+\frac{1}{x}}+x^2+3+\frac{1}{x^2}=4\)
Đặt \(x+\frac{1}{x}=a\)=> \(x^2+\frac{1}{x^2}=a^2-2\)
=> \(\frac{a^2-6}{a}+a^2-3=0\)
<=> \(a^3+a^2-3a-6=0\)=> \(\left(a-2\right)\left(a^2+3a+3\right)=0\)
=> a=2
=> \(x+\frac{1}{x}=2\)=> \(x^2+1=2x\)=> x=1 (thỏa mãn ĐKXĐ)
Vậy \(x=1\)
\(ĐKXĐ:x\ne0\)
\(PT\Leftrightarrow\frac{x^7-x^6+4x^5-4x^4+4x^3+x^2+x}{x^3\left(x^2+1\right)}=4\)
\(\Leftrightarrow\frac{x^6+x^5-4x^3+x+1+4x^2\left(x^2+1\right)}{x^2\left(x^2+1\right)}=4\)
\(\Leftrightarrow\frac{x^6+x^5-4x^3+x+1}{x^2\left(x^2+1\right)}=0\)
\(\Leftrightarrow x^6+x^5-4x^3+x+1=0\)
\(\Leftrightarrow x^6-x^5+2x^5-2x^4+2x^4-2x^3-2x^3+2x^2-2x^2+2x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5+2x^4+2x^3-2x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4+3x^3+5x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4+3x^3+5x^2+3x+1\right)=0\)
Vì \(x^4+3x^3+5x^2+3x+1\ne0\)nên
\(x-1=0\Leftrightarrow x=1\)
Vậy tập nghiệm của pt là \(S=\left\{1\right\}\)