Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)<=> \(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
<=>\(\frac{8+x-8}{x-8}+\frac{11+x-11}{x-11}=\frac{9+x-9}{x-9}+\frac{10+x-10}{x-10}\)
<=>\(\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
<=>\(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=>\(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
=>\(\orbr{\begin{cases}x=0\\\frac{1}{x-8}+\frac{1}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\end{cases}}\)
đến đoạn bạn giải tiếp nhé
a/ ĐKXĐ: \(x\ne\left\{8;9;10;11\right\}\)
\(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
\(\Leftrightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
\(\Leftrightarrow x\left(\frac{1}{x-8}-\frac{1}{x-9}+\frac{1}{x-11}-\frac{1}{x-10}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-9}-\frac{1}{x-8}=\frac{1}{x-11}-\frac{1}{x-10}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{1}{\left(x-9\right)\left(x-8\right)}=\frac{1}{\left(x-11\right)\left(x-10\right)}\)
\(\Leftrightarrow x^2-17x+72=x^2-21x+110\)
\(\Rightarrow x=\frac{19}{2}\)
b/ ĐK: \(x\ne\left\{3;4;5;6\right\}\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-3}-\frac{1}{x-5}=\frac{1}{x-4}-\frac{1}{x-6}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\frac{-2}{\left(x-3\right)\left(x-5\right)}=\frac{-2}{\left(x-4\right)\left(x-6\right)}\)
\(\Leftrightarrow x^2-8x+15=x^2-10x+24\)
\(\Rightarrow x=\frac{9}{2}\)
\(ĐKXĐ:x\ne3;x\ne5;x\ne4;x\ne6\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Rightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)
\(\Rightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Rightarrow\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-5}+\frac{1}{x-4}\)
\(\Rightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-5\right)\left(x-4\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\left(tm\right)\\\left(x-3\right)\left(x-6\right)=\left(x-5\right)\left(x-4\right)\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow x^2-9x+18=x^2-9x+20\)
\(\Leftrightarrow0=2\left(L\right)\)
Vậy pt có 2 nghiệm \(\left\{0;\frac{9}{2}\right\}\)
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
\(-537x^2+5054x=-541x^2+5092x\)
\(-537x^2+5054x+541x^2-5092x=0\)
\(4x^2-38x=0\)
\(x\left(2x-19\right)=0\)
\(\orbr{\begin{cases}x=0\\2x=19\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{19}{2}\end{cases}}\)
a) Đk: x \(\ne\)-2
Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)
<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10
<=> -4x - 8 = 5x + 10
<=> -4x - 5x = 10 + 8
<=> -9x = 18
<=> x = -2 (ktm)
=> pt vô nghiệm
b) Đk: x \(\ne\)2; x \(\ne\)-3
Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)
<=> x + 3 - 6x + 12 = -5
<=> -5x = -5 - 15
<=> -5x = -20
<=> x = 4
vậy S = {4}
c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11
Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)
Vậy S = {0}
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
\(\Rightarrow\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
\(\Rightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
\(\Rightarrow\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
\(\Rightarrow x\left(x-8+x-11-x+9-x+10\right)=0\)
\(\Rightarrow x.0=0\)
Vậy x thỏa mãn với mọi giá trị.
Câu còn lại bn lm tương tự nhé........
DKXD: x khác 3;4;5;6
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Leftrightarrow\frac{x^2-5x-x^2+3x}{\left(x-3\right).\left(x-5\right)}-\frac{x^2-6x-x^2+4x}{\left(x-4\right).\left(x-6\right)}=0\)
\(\Leftrightarrow\frac{2x}{\left(x-4\right).\left(x-6\right)}-\frac{2x}{\left(x-3\right).\left(x-5\right)}=0\)
\(\Leftrightarrow2x.\left(\frac{\left(x-3\right).\left(x-5\right)-\left(x-4\right).\left(x-6\right)}{\left(x-4\right).\left(x-6\right).\left(x-3\right).\left(x-5\right)}\right)=0\)
\(\Leftrightarrow2x.\left(\frac{2x-9}{\left(x-4\right).\left(x-5\right).\left(x-3\right).\left(x-6\right)}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{2}\end{cases}}}\)
Vậy x=0 hoặc x=9/2
\(\frac{-5}{9}x+1=\frac{2}{3}x-10\)
\(\frac{-5}{9}x+\frac{9}{9}=\frac{6}{9}x-\frac{90}{9}\)
\(-5x+9=6x-90\)
\(-5x-6x=-90-9\)
\(-11x=-99\)
\(x=\frac{-99}{-11}=9\)
b. \(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)
\(\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)
\(\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)
\(\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)
x=30
Chúc bạn học tốt!!
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
a, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1998}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)
=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}=0\right)\)
=> \(x-2004=0\)
=> \(x=2004\)
Vậy phương trình có nghiệm là x = 2004 .
b, Ta có : \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
=> \(\frac{x-85}{15}-1+\frac{x-74}{13}-2+\frac{x-67}{11}-3+\frac{x-64}{9}-4=10-1-2-3-4=0\)
=> \(\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
=> \(\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
=> \(x-100=0\)
=> \(x=100\)
Vậy phương trình có nghiệm là x = 100 .
X=0
Xin slot :)