Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
a)
\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
b) ĐKXĐ \(x\le3\)
\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.
Tậm nghiệm S = {1}
mình sẽ xóa câu này mong bạn gửi lại câu hỏi khác để rõ ràng cho các bạn khác tham khảo nha
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có :
\(A=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{x-1}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+1}\)
\(=1\)
Vậy...
b/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có :
\(B=\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}+6\right)\left(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}-3\right)\)
\(=\left(\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+6\right)\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-3\right)\)
\(=\left(\sqrt{x}-2+6\right)\left(\sqrt{x}-1-3\right)\)
\(=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)\)
\(=x-16\)
Vậy..
c/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có :
\(C=\frac{2\sqrt{x}}{x-1}+\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}-x}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{2}{\sqrt{x}}\)
Vậy..
+ bắt bẻ : đkxđ x ≥ 0 vì có \(\sqrt{x}\)
+ giải thích : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\sqrt{x+3}^2-\sqrt{x+2}^2}=\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}=\frac{\sqrt{x+3}-\sqrt{x+2}}{1}=\sqrt{x+3}-\sqrt{x+2}\)
tương tự vs mấy cái còn lại !!
~ bn làm vậy ai hiểu cho nỗi !! ~
a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)
b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)
c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)
d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)
e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)
g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)
h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)