Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15
\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)
\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)
\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0
\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk
16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)
\(\Leftrightarrow\)x^2-3x+6=x+3
\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)
vậy x=1 là nghiệm của pt
17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)
<=> x + 2 + x - 2 = 3
<=> 2x = 3
<=> x = \(\dfrac{3}{2}\)
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
cái này đâu ra z ???
nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!
\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\left(x\text{ ≥}1\right)\)
⇔ \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
⇔ \(-\sqrt{x-1}=-17\)
⇔ \(x=290\left(TM\right)\)
KL..................
a)\(\dfrac{2}{x^2-1}+\dfrac{1}{x+1}=2\) Điều kiện:x#1,-1
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x-1\right)}+\dfrac{1}{x+1}=2\\\)
\(\Leftrightarrow\dfrac{2+x-1}{\left(x+1\right)\left(x-1\right)}=2\)
\(\Leftrightarrow\dfrac{1}{x-1}=2\)
\(\Leftrightarrow1=2\left(x-1\right)\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
b)\(1-\dfrac{12}{x^2-4}=\dfrac{3}{x+2}\) Điều kiện:x#2,-2
\(\Leftrightarrow\dfrac{x^2-4-12}{x^2-4}=\dfrac{3}{x+2}\)
\(\Leftrightarrow x^2-16=3\left(x-2\right)\)
\(\Leftrightarrow x^2-16-3x+6=0\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{5\right\}\)
Bài 1:
Đặt \(\left\{\begin{matrix} 5x+3=a\\ 2x+4=b\end{matrix}\right.\) \(\Rightarrow 3x-1=a-b\)
PT trở thành:
\(a^3-b^3=(a-b)^3\)
\(\Leftrightarrow (a-b)(a^2+ab+b^2)=(a-b)^3\)
\(\Leftrightarrow (a-b)[a^2+ab+b^2-(a^2-2ab+b^2)]=0\)
\(\Leftrightarrow 3ab(a-b)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\b=0\\a=b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{5}\\x=-2\\5x+3=2x+4\Leftrightarrow x=\dfrac{1}{3}\end{matrix}\right.\)
Thử lại thấy đều thỏa mãn
Vậy \(x\in\left\{\frac{-3}{5};-2;\frac{1}{3}\right\}\)
Bài 2:
\(\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}=\frac{x-4}{2010}\)
\(\Leftrightarrow \frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\left(\frac{x-3}{2011}-1\right)=\frac{x-4}{2010}-1\)
\(\Leftrightarrow \frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}=\frac{x-2014}{2010}\)
\(\Leftrightarrow (x-2014)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\) (1)
Thấy rằng \(2013> 2011; 2012> 2010\Rightarrow \frac{1}{2013}< \frac{1}{2011}; \frac{1}{2012}< \frac{1}{2010}\)
\(\Rightarrow \frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}< 0\) (2)
Từ (1),(2) suy ra \(x-2014=0\Leftrightarrow x=2014\)
Bài 3:
Đặt \(\left\{\begin{matrix} 2x-5=a\\ x-2=b\end{matrix}\right.\Rightarrow x-3=a-b\)
PT trở thành: \(a^3-b^3=(a-b)^3\)
\(\Leftrightarrow (a-b)(a^2+ab+b^2)-(a-b)(a^2-2ab+b^2)=0\)
\(\Leftrightarrow 3ab(a-b)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\b=0\\a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\\x-3=0\Leftrightarrow x=3\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{2}; 2; 3\right\}\)
b) ta có pt \(\sqrt{25-x^2}-\sqrt{9-x^2}=2\)
Đặt \(\sqrt{25-x^2}=a;\sqrt{9-x^2}=b\left(a,b\ge0\right)\Rightarrow a-b=2\)
Mà \(a^2-b^2=25-x^2-9+x^2=16\Leftrightarrow\left(a-b\right)\left(a+b\right)=16\Leftrightarrow a+b=8\)
ta có a-b=2;a+b=8=> a=5;b=3
a) ta có pt \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\Leftrightarrow x-\dfrac{4}{x}+\sqrt{2x-\dfrac{5}{x}}-\sqrt{x-\dfrac{1}{x}}=0\)
đặt \(\sqrt{2x-\dfrac{5}{x}}=a;\sqrt{x-\dfrac{1}{x}}=b\Rightarrow a^2-b^2=2x-\dfrac{5}{x}-x+\dfrac{1}{x}=x-\dfrac{4}{x}\)
nên pt \(\Leftrightarrow a^2-b^2+a-b=0\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
`[x-17]/1998+[x-21]/1994+[x+1]/1008=4`
`<=>[x-17]/1998-1+[x-21]/1994-1+[x+1]/1008-2=0`
`<=>[x-2015]/1998+[x-2015]/1994+[x-2015]/1008=0`
`<=>(x-2015)(1/1998+1/1994+1/1008)=0`
`=>x-2015=0`
`<=>x=2015`
\(\dfrac{x-17}{1998}+\dfrac{x-21}{1994}+\dfrac{x+1}{1008}\text{=}4\)
\(\Leftrightarrow\dfrac{x-17}{1998}+\dfrac{x-21}{1994}+\dfrac{x+1}{1008}-4\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x-17}{1998}-1\right)+\left(\dfrac{x-21}{1994}-1\right)+\left(\dfrac{x+1}{1008}-2\right)\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x-2015}{1998}\right)+\left(\dfrac{x-2015}{1994}\right)+\dfrac{x-2015}{1008}\text{=}0\)
\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{1998}+\dfrac{1}{1994}+\dfrac{1}{1008}\right)\text{=}0\)
\(\Leftrightarrow\left(x-2015\right)\text{=}0\)
\(\Leftrightarrow x\text{=}2015\)
\(vay...\)