Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Pt đã cho tương đương với:
\(\sqrt{3x-2}=\sqrt{x+7}+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x-2=x+7+1+2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\2x-10=2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x-5=\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-10x+25=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-11x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left(x-2\right)\left(x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\end{matrix}\right.\)(Loại )
\(\Leftrightarrow x=9\)
Vậy pt có nghiệm x =9
b. Đk: \(x\ne1;y\ne2\)
Đặt \(\dfrac{1}{x-1}=a;\dfrac{1}{y-2}=b\)
Khi đó hệ đã cho trở thành:
\(\left\{{}\begin{matrix}a+b=2\\-3a+2b=1\end{matrix}\right.\)
Giải hệ trên tìm a,b rồi từ đó tìm được x;y. Nhớ đối chiếu với Đk trước khi kết luận.
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
Bài 3:
a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)
b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)
\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)
Câu 1:
\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)
\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)
Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)
\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)
Và do $a,b\geq 3$ nên:
\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)
\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)
Cộng tất cả những BĐT trên ta có:
\(A\geq 2+14+62+2=80\) (đpcm)
Dấu "=" xảy ra khi $a=b=3$
Câu 2:
Bình phương 2 vế ta thu được:
\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)
\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)
\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)
\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)
Do đó pt đã cho vô nghiệm.