\(\dfrac{1-x}{x+1}\)+3 = \(\dfrac{2x+3}{x+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

ĐKXĐ: x\(\ne\)-1

\(\Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x+1}\)

\(\Leftrightarrow1-x+3\left(x+1\right)=2x+3\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow2x+4=2x+3\)

\(\Leftrightarrow2x-2x=3-4\)

\(\Leftrightarrow0x=-1\)

S= \(\varnothing\)

28 tháng 4 2018

chúc bạn thi tốt :")

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

a: \(\Leftrightarrow\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+5\right)+\left(2x-1\right)^2-2\left(2x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2+10x+25+4x^2-4x+1-2\left(2x^2+10x-x-5\right)=0\)

\(\Leftrightarrow5x^2+6x+26-4x^2-18x+10=0\)

\(\Leftrightarrow x^2-12x+36=0\)

=>x=6

b: \(\dfrac{9x-27}{2x-7}-\dfrac{8x-28}{x-3}=0\)

\(\Leftrightarrow9\left(x-3\right)^2-4\left(2x-7\right)^2=0\)

\(\Leftrightarrow\left(3x-9\right)^2-\left(4x-14\right)^2=0\)

\(\Leftrightarrow\left(3x-9-4x+14\right)\left(3x-9+4x-14\right)=0\)

\(\Leftrightarrow\left(5-x\right)\left(7x-23\right)=0\)

hay \(x\in\left\{5;\dfrac{23}{7}\right\}\)

10 tháng 5 2018

b.\(x^3-16x^2+64x=0\)

=>\(x^3-8x^2-8x^2+64x=0\)

=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)

=>\(x\left(x-8\right)\left(x-8\right)=0\)

=>\(x=0\)\(x-8=0\)

=>x=0 và x= 8

Vậy S={0; 8}

10 tháng 5 2018

\(|6x-1|=2x+5\)

-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)

\(|6x-1|=2x+5\)

\(\Leftrightarrow6x-1=2x+5\)

\(\Leftrightarrow6x-2x=5+1\)

\(\Leftrightarrow4x=6\)

\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)

-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)

\(|6x-1|=2x+5\)

\(\Leftrightarrow-6x+1=2x+5\)

\(\Leftrightarrow-6x-2x=5-1\)

\(\Leftrightarrow-8x=4\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)

Vậy S={\(-\dfrac{1}{2}\)}

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

23 tháng 2 2019

a) Đk : \(x\ne0;\ne1\)

\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{0}{x-1}=0\)

=> Phương trình có vô số nghiệm x

b) Đk : \(x\ne2;x\ne3\)

\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)

\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)

=0

\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)

=> Phương trình vô nghiệm

c)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)

=> PTVN

d) Thôi tự làm đi, câu này dễ :Vvv

e)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40

\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt

\(x^2+6x+7=t\)

Phương trình tương đương

\(\left(t-1\right)\left(t+1\right)=40\)

\(t^2=41\)

\(\)\(t=\pm\sqrt{41}\)

Thay vào tìm x.

24 tháng 2 2019

Thanks ;)

31 tháng 3 2017

d) \(\dfrac{x+1}{x-1}-\dfrac{x+2}{x+3}+\dfrac{4}{x^2+2x-3}=0\) (ĐKXĐ: \(x\ne1;-3\))

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)-\left(x+2\right)\left(x-1\right)+4}{\left(x+3\right)\left(x-1\right)}=0\)

\(\Rightarrow\left(x+1\right)\left(x+3\right)-\left(x+2\right)\left(x-1\right)+4=0\)

\(\Leftrightarrow x^2+4x+3-x^2-x+2+4=0\)

\(\Leftrightarrow3x+9=0\Leftrightarrow x=-3\left(loại\right)\)

vậy phương trình đã cho vô nghiệm

31 tháng 3 2017

c)\(\dfrac{2}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{x}{x^2+x+1}\) (ĐKXĐ: \(x\ne1\))

\(\Leftrightarrow\dfrac{2\left(x^2+x+1\right)-3x^2}{x^3-1}=\dfrac{x\left(x-1\right)}{x^3-1}\)

\(\Rightarrow2x^2+2x+2-3x^2=x^2-x\)

\(-2x^2+3x+2=0\)

\(\left(x-2\right)\left(-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\\-2x-1=0\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

vậy tập nghiệm của phương trình là S={2;-0,5)

a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

=>x=3 hoặc x=-10/7

b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)

\(\Leftrightarrow x^2-12x-51+13x+39=0\)

\(\Leftrightarrow x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=-4

6 tháng 2 2018

a ) \(\dfrac{1}{x-1}-\dfrac{7}{x+2}=\dfrac{3}{x^2+x-2}\) (1)

ĐKXĐ : x\(\ne1;-2.\)

\(\left(1\right)\Leftrightarrow x+2-7x+7=3\)

\(\Leftrightarrow-6x=-6\)

\(\Leftrightarrow x=1\left(loại\right)\)

Vậy pt vô nghiệm .

b ) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)

Đặt \(x^2+2x+1=t\) ta được :

\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow6t^2+12t+6t^2+12t+6=7\left(t^2+3t+2\right)\)

\(\Leftrightarrow5t^2+3t-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{8}{5}\end{matrix}\right.\)

Khi t = 1

\(\Leftrightarrow\left(x+1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Khi \(t=-\dfrac{8}{5}\)

\(\Leftrightarrow\left(x+1\right)^2=-\dfrac{8}{5}\) ( vô lí )

Vậy ............