Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui chưa nháp nhưng câu 1 thử nhân hết ra coi triệt tiêu bớt đc ko, mà chắc chắn là nhân ra sẽ mất cái 27x^3 rồi nên thành pt bậc 2 giải vô tư nhé, câu 2 tách hết ra cx lm đc vì nó là pt bậc 2
câu 3 tách thành (x+3)(x^2-7x+9)=0 có pt bậc 2 nên ok r
(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4
<=> 27x3 - 8 - 27x3 + 1 = x - 4
<=> x - 4 = -7
<=> x = -3
Vậy S = {-3}
9(2x + 1) = 4(x - 5)2
<=> 4(x2 - 10x + 25) - 18x - 9 = 0
<=>4x2 - 40x + 100 - 18x - 9 = 0
<=> 4x2 - 58x + 91 = 0
<=> (4x2 - 58x + 210,25) - 119,25 = 0
<=> (2x - 14,5)2 = 119,25
<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
Vậy S = {...}
x3 - 4x2 - 12x + 27 = 0
<=> (x3 + 3x2) - (7x2 + 21x) + (9x + 27) = 0
<=> x2(x + 3) - 7x(x + 3) + 9(x + 3) = 0
<=> (x2 - 7x + 9)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-7x+9=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2-7x+12,25\right)-3,25=0\\x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-3,5\right)^2=3,25\\x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3,5=\sqrt{3,25}\\x-3,5=-\sqrt{3,25}\end{cases}}\)
hoặc x = -3
<=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)
hoặc x = -3
Vậy S = {...}
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2+3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left(3x^3\right)+1=x-4\)
\(\Leftrightarrow x=13\)
9(2x+1)=4(x-5)2
<=> 18x+9=4(x2-10x+25)
<=> 4x2-58x+91=0
\(\Leftrightarrow x=\frac{29\pm3\sqrt{53}}{4}\)
x3-4x2-12x+27=0
<=> (x+3)(x2-7x+9)=0
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)
làm ra thì dài quá mk ko còn nhiều t/g
bn Áp dụng HĐT a2-b2=(a+b)(a-b) đi
Đ/a: a)x1=2;x2=6;x3,4=\(\frac{-2\pm\sqrt{452}}{14}\)
b)x1=-1;x2=1/2;x3,4=\(\frac{-2\pm\sqrt{8}}{2}\)
c)x=-5/4;x=1/2
=>(x-3)(x+2)(x+4)=0
=>\(\hept{\begin{cases}x-3=0\\x+2=0\\x+4=0\end{cases}=>\hept{\begin{cases}x=3\\x=-2\\x=-4\end{cases}}}\)
d)=>(x-4)(x-1)(x+2)=0
=>\(\hept{\begin{cases}x-4=0\\x-1=0\\x+2=0\end{cases}=>\hept{\begin{cases}x=4\\x=1\\x=-2\end{cases}}}\)
Ai k mk mk sẽ k lại
(x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = a
<=> a2 + 3xa + 2x2 = 0
<=> a2 + 2ax + ax + 2x2 = 0
<=> (a + x)(a + 2x) = 0
<=> (x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
<=> (x2 + 5x + 8)(x2 + 6x + 8) = 0
<=> x2 + 4x + 2x + 8 = 0 (vì x2 + 5x + 8 = (x2 + 5x + 6,25) + 1,75 = (x + 2,5)^2 + 1,75 > 0)
<=> (x + 4)(x + 2) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=-2\end{cases}}\)
Vậy S = {-4; -2}
`x^2+3x+8=0`
`<=>x^2+2*x*3/2+9/4-9/4+8=0`
`<=>(x+3/2)^2-2-1/4+8=0`
`<=>(x+3/2)^2+5+3/4=0`
`<=>(x+3/2)^2=-23/4` vô lý
Vì `VT>=0,VP<0`
`=>` PT vô nghiệm