\(4x^2-12x-5\sqrt{4x^2-12x+11}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Lời giải:

ĐKXĐ:.........

PT \(\Leftrightarrow (4x^2-12x+11)-5\sqrt{4x^2-12x+11}-11=0\)

Đặt \(\sqrt{4x^2-12x+11}=t\)

\(\Rightarrow t^2-5t-11=0\)

\(\Rightarrow \left[\begin{matrix} t=\frac{5+\sqrt{69}}{2}\\ t=\frac{5-\sqrt{69}}{2}\end{matrix}\right.\). Vì $t$ không âm nên \(t=\frac{5+\sqrt{69}}{2}\)

\(\Rightarrow 4x^2-12x+11=t^2=\frac{47+5\sqrt{69}}{2}\)

\(\Leftrightarrow 4x^2-12x-\frac{25+5\sqrt{69}}{2}=0\)

\(\Rightarrow x=\frac{1}{4}\left(6\pm \sqrt{86+10\sqrt{69}}\right)\) (thỏa mãn)

Vậy...........

P/s: Thực chất chỉ cần có hướng làm là được, nhưng đề ra dở ở cái số quá xấu chỉ tổ làm vất học sinh chứ không giải quyết được gì có ích.

30 tháng 11 2018

Thanks nha

3 tháng 11 2019

b) \(1+4x-3|x+2|+4=0\)

\(\Leftrightarrow4x-3|x+2|=-5\left(1\right)\)

TH1: Với \(|x+2|=x+2\)thay vào (1) ta được:

\(4x-3\left(x+2\right)=-5\)

\(\Leftrightarrow4x-3x-6=-5\)

\(\Leftrightarrow x=1\)(chọn tự thử lại nhé nó =0 )

TH2: Với \(|x+2|=-x-2\)thay vào (1) ta được: 

\(4x-3\left(-x-2\right)=-5\)

\(\Leftrightarrow4x+3x+6=-5\)

\(\Leftrightarrow7x=-11\)

\(\Leftrightarrow x=\frac{-11}{7}\)( loại tự thử lại nhé nó ko =0 )

Vậy x=1

1 tháng 12 2019

1/\(4x^4+12x^3-47x^2+12x+4=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3+20x^2-7x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(2x^2+11x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=\frac{-11\pm\sqrt{105}}{4}\end{matrix}\right.\)

Vậy ....

1 tháng 12 2019

1, 4x^4+12x^3+12x−47x^2+4=0 nhé

NV
26 tháng 11 2018

Nhầm, cái đầu là x=-2 chứ :D

NV
26 tháng 11 2018

\(\left(x+2\right)^2-3\left|x+2\right|=0\)

Đặt \(\left|x+2\right|=t\ge0\) pt trở thành:

\(t^2-3t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+2=3\\x+2=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-5\end{matrix}\right.\)

NV
22 tháng 10 2019

a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)

Đặt \(\sqrt[3]{x^2+5x-2}=a\)

\(a^3-2a+4=0\)

\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)

b/ ĐKXĐ:...

\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)

Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)

\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)

d/ ĐKXĐ: \(-1\le x\le2\)

\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)

\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)

\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)

Đặt \(\sqrt{2+x-x^2}=a\ge0\)

\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)

e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

21 tháng 6 2019

a) ĐK:\(x\ge\frac{1}{2}\)

Với \(x\ge\frac{1}{2}\) thì \(\left\{{}\begin{matrix}\sqrt{4x-1}\ge1\\\sqrt{4x^2-1}\ge0\end{matrix}\right.\Rightarrow VT\ge1=VP\)

=> PT có nghiệm khi và chỉ khi \(x=\frac{1}{2}\)

b) ĐK: \(-3\le x\le\frac{3}{2}\)

\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\\ \left[\left(x+3\right)-4\sqrt{x+3}+4\right]+\left[\left(3-2x\right)-2\sqrt{3-2x}+1\right]=0\\ \left(\sqrt{x+3}-2\right)^2+\left(\sqrt{3-2x}-1\right)^2=0\)

Lập luận =>\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{matrix}\right.\Leftrightarrow x=1}\)

1 tháng 12 2019

Đặt: \(\sqrt[3]{3x-1}=a;\sqrt[3]{4x-1}=b\)

\(\Rightarrow\sqrt[3]{12x^2-7x+1}=\sqrt[3]{\left(3x-1\right)\left(4x-1\right)}=ab\)

Phương trình có dạng :

 \(2a^2+3b^2=5ab\Leftrightarrow2a^2-5ab+3b^2=0\)

\(\Leftrightarrow2a^2-2ab-3ab+3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt[3]{3x-1}=\sqrt[3]{4x-1}\\2\sqrt[3]{3x-1}=3\sqrt[3]{4x-1}\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=4x-1\\8\left(3x-1\right)=27\left(4x-1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{19}{84}\end{cases}}}\)