Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\Leftrightarrow\frac{5x^2+16}{\left(x+4\right)\left(x-4\right)}=\frac{\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}DKXD:x\ne4;-4\)
\(\Rightarrow5x^2+16=2x^2-8x-x+4+3x^2+12x-x-4\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
\(b.\Leftrightarrow\frac{\left(y+1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12+\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}.DKXD:y\ne2;-2\)
\(\Rightarrow y^2+2y+y+2-5y+10=12+y^2-4\)
\(\Leftrightarrow-2y=-4\)
\(\Leftrightarrow y=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(x^4+x^3-3x^2-4x-4=0\)
\(\Leftrightarrow x^4+2x^3-x^3-2x^2-x^2-2x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-2x^2+x^2-2x+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+x+1\right)=0\)
Vì \(x^2+x+1>0\forall x\)( cách c/m mình nói sau )
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
Vậy....
Cách chứng minh :
\(x^2+x+1\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Hay \(x^2+x+1>0\forall x\)( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
\(A=x^2+2x+2012\)
\(=\left(x^2+2x+1\right)+2011\)
\(=\left(x+1\right)^2+2011\)
Ta có: \(\left(x+1\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+1\right)^2+2011\ge2011,\forall x\)
Hay \(A\ge2011,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy Min A=2011 tại x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a: 3x+22-3x+16=53+2x
=>2x+53=38
=>2x=38-53=-15
=>\(x=-\dfrac{15}{2}\)
b: \(\left(x+1\right)\left(x+2\right)=\left(2-x\right)\left(x+2\right)\)
=>\(\left(x+1\right)\left(x+2\right)-\left(2-x\right)\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+1-2+x\right)=0\)
=>(x+2)(2x-1)=0
=>\(\left[{}\begin{matrix}x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)