Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
\(x^5-5x^4+4x^3+4x^2-5x+1=0\)
\(\left(x^5-x^4\right)-\left(4x^4-4x^3\right)+\left(4x^2-4x\right)-\left(x-1\right)=0\)
\(x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^4-4x^3+4x-1\right)=0\)
\(\left(x-1\right)\left[\left(x^4-1\right)-\left(4x^3-4x\right)\right]=0\)
\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x^2-1\right)\right]=0\)
\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x-1\right)\left(x+1\right)\right]=0\)
\(\left(x-1\right)^2\left(x^3+x^2+x+1-4x^2-4x\right)=0\)
\(\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\left(x-1\right)^2\left(x+1\right)\left(x^2-x+1-3x\right)=0\)
\(\left(x-1\right)^2\left(x+1\right)\left[\left(x^2-2.x.2+2^2\right)-3\right]=0\)
\(\left(x-1\right)^2\left(x+1\right)\left[\left(x-2\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\left(x-1\right)^2\left(x+1\right)\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)
Đến đây b tự làm tiếp nhé~
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
ĐKXĐ: x khác -1
Đặt \(\frac{x}{\left(x+1\right)}=y\), ta có:
\(2y^2-5y+3=0\)
\(\Leftrightarrow2y^2-2y-3y+3=0\)
\(\Leftrightarrow2y\left(y-1\right)-3\left(y-1\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(2y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=1\\y=\frac{3}{2}\end{cases}}\)
Sau đó thay từng giá trị của y vào \(\frac{x}{x+1}\)
a/ ĐKXĐ: \(x\ge\frac{3}{4}\)
\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)
\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)
b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)
Đặt \(\sqrt{x^2+x+1}=t>0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+1}=1\)
\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)