\(5\sqrt{x^3+1}=2\left(x^2+2\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

Điều kiện: x+ 1 > 0

PT <=> \(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)

Đặt \(\sqrt{x+1}=a;\sqrt{x^2-x+1}=b\) (a; b > 0) => a+ b= x+ 2

Khi đó, PT <=> 5ab = 2(a+ b2)  <=> 2a2 - 4ab - ab + 2b= 0 <=> 2a(a - 2b) - b(a - 2b) = 0 <=> (2a - b)(a - 2b) = 0

<=> a = 2b hoặc b = 2a

+) Nếu a = 2b thì  \(\sqrt{x+1}=2\sqrt{x^2-x+1}\) <=> x+ 1 = 4(x2 - x + 1) <=> 4x2 - 5x + 3 = 0 ( tính \(\Delta\) suy ra x...)

+) Nếu b = 2a : giải tương tự

21 tháng 3 2016

<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)

b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)

<=>\(2\sqrt{2}^x+2=6\)

<=>x=2

Bài 1: 

a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)

\(=5-\sqrt{3}-2+\sqrt{3}=3\)

b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)

\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)

c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)

d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2020

Câu 2: ĐK..............

PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$

$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$

$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$

$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$

$\Leftrightarrow -x^2+6x+7=0$

$\Leftrightarrow x=7$ hoặc $x=-1$

Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$

$\Rightarrow y=\frac{(x-3)^2}{4}=4$

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 7 2020

Câu 1:

ĐK:..............

PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$

$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$

$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$

$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$

$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$

$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$

$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$

$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$

$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$

$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)

Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$

 

12 tháng 8 2019

\(\sqrt{\frac{-6}{1+x}}=5\)

\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)

\(\Leftrightarrow\frac{-6}{1+x}=25\)

\(\Leftrightarrow x+1=\frac{-6}{25}\)

\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)

12 tháng 8 2019

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)

\(\Leftrightarrow\sqrt{x-49}=2\)

\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)

8 tháng 9 2018

 Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=a^3\\x-1=b^3\end{cases}}}\)

Ta có 

\(pt\Leftrightarrow a^2+b^2+ab=1\)      (1)

Lại có \(a^3-b^3=2\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=2\)        (2)

Thay (1) vào (2) ta có   a-b=2<=>a=2+b     thay và (1)

\(\left(2+b\right)^2+b^2+b\left(b+2\right)=1\)

\(\Leftrightarrow3b^2+6b+3=0\)

\(\Leftrightarrow3\left(b+1\right)^2=0\Leftrightarrow b=-1\)

\(\Leftrightarrow\sqrt[3]{x-1}=-1\Leftrightarrow x=0\)