![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ĐKXĐ: x<>0
\(\Leftrightarrow3x^2+10x-3x-10=0\)
=>(3x+10)(x-1)=0
=>x=-10/3 hoặc x=1
b: ĐKXĐ: \(x\in R\)
\(\Leftrightarrow4x-17=0\)
hay x=17/4
c: ĐKXĐ: \(x\ne-5\)
=>2x-5=0
hay x=5/2
d: ĐKXĐ: x<>-2/3
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)
\(\Leftrightarrow6x^2+4x-3x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
=>(6x+7)(x-1)=0
=>x=1 hoặc x=-7/6
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
\(\Leftrightarrow21\left(x+13\right)=7\left(2x-1\right)-3\left(5x+2\right)\)
\(\Leftrightarrow21x+273=14x-7-15x-6=-x-13\)
=>22x=-286
hay x=-13
b: \(\dfrac{2x-3}{3}-\dfrac{x-3}{6}=\dfrac{4x+3}{5}-17\)
\(\Leftrightarrow10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
\(\Leftrightarrow20x-30-5x+15=24x+18-510\)
\(\Leftrightarrow15x-15=24x-492\)
=>-9x=-477
hay x=53
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a, x(x+3)-(2x-1)(x+3)=0\)
\(⇔(x+3)(1-x)=0\)
\(⇔\left[\begin{array}{} x+3=0\\ 1-x=0 \end{array}\right.\)
\(⇔\left[\begin{array}{} x=-3\\ x=1 \end{array}\right.\)
Vậy phương trình có tập nghiệm là S={\(-3; 1\)}
\(b, 3x-5(x+2)=3(4-2x)\)
\(⇔3x-5x-10=12-6x\)
\(⇔3x-5x+6x=12+10\)
\(⇔4x=22\)
\(⇔x=\dfrac{22}{4}\)
Vậy pt có 1 nghiệm là \(x=\dfrac{22}{4}\)
\(c, (4x-3)(5x-6)=(4x-3)(2x-3)\)
\(⇔5x-6=2x-3\)
\(⇔5x-2x=-3+6\)
\(⇔3x=3\)
\(⇔x=1\)
Vậy pt có 1 nghiệm là \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)
\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{x^4+1}{2x+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1. a) 4x - 3 = 0
⇔ x = \(\dfrac{3}{4}\)
KL.....
b) - x + 2 = 6
⇔ x = - 4
KL...
c) -5 + 4x = 10
⇔ 4x = 15
⇔ x = \(\dfrac{15}{4}\)
KL....
d) 4x - 5 = 6
⇔ 4x = 11
⇔ x = \(\dfrac{11}{4}\)
KL....
h) 1 - 2x = 3
⇔ -2x = 2
⇔ x = -1
KL...
Bài 2. a) ( x - 2)( 4 + 3x ) = 0
⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)
KL......
b) ( 4x - 1)3x = 0
⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)
KL.....
c) ( x - 5)( 1 + 2x) = 0
⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)
KL.....
d) 3x( x + 2) = 0
⇔ x = 0 hoặc x = -2
KL.....
Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0
⇔ x - 10 ≥ 0
⇔ x ≥ 10
0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4
⇔ - 4x - 3 ≤ 9x - 4
⇔ 13x ≥1
⇔ x ≥ \(\dfrac{1}{13}\)
0 1/13
ĐKXĐ:\(x\ne\pm1\)
\(\dfrac{4x+5}{x-1}+\dfrac{2x-1}{x+1}=6\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(4x+5\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)}=6\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(4x+5\right)+\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)}=6\)
\(\Leftrightarrow4x^2+4x+5x+5+2x^2-2x-x+1=6\left(x^2-1\right)\\ \Leftrightarrow6x^2+6x+6=6x^2-6\\ \Leftrightarrow6x=-12\\ \Leftrightarrow x=-2\left(tm\right)\)
\(\dfrac{4x+5}{x-1}+\dfrac{2x-1}{x+1}=6\)
\(\dfrac{\left(4x+5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(4x+5\right)\left(x+1\right)+\left(2x-1\right)\left(x-1\right)}{x^2-1}\)
\(\dfrac{4x^2+9x+5+2x^2-3x+1}{x^2-1}=\dfrac{6x^2+6x+6}{x^2-1}=6\)
\(\Rightarrow6x^2+6x+6=6\left(x^2-1\right)=6x^2-6\)
\(\Rightarrow6x+12=0\Rightarrow x=-2\)