\(3\sqrt{\dfrac{x-5}{2}}-2\sqrt{\dfrac{x-7}{3}}+1=\sqrt{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Nguyễn Huy TúAkai HarumaLightning FarronMysterious PersonDƯƠNG PHAN KHÁNH DƯƠNG

10 tháng 9 2018

Đề đung không thê. Xao nghiệm xâu dữ vậy

5 tháng 7 2018

\(\dfrac{3\sqrt{x}}{2}-\dfrac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)

\(\Leftrightarrow9\sqrt{x}-15-4\sqrt{x}+14=6\sqrt{x}-6\left(x\ge0\right)\)

\(\Leftrightarrow5\sqrt{x}-1=6\sqrt{x}-6\)

\(\Leftrightarrow x=25\left(TM\right)\)

KL.....

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

6 tháng 7 2017

2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)

\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)

\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)

\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)

\(\Leftrightarrow46\cdot\left|x\right|=529+9\)

\(\Leftrightarrow49\cdot\left|x\right|=538\)

\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)

Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)

3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)

\(\Leftrightarrow14-x=x^2-5x+4\)

\(\Leftrightarrow14-x-x^2+5x-4=0\)

\(\Leftrightarrow10+4x-x^2=0\)

\(\Leftrightarrow-x^2+4x+10=0\)

\(\Leftrightarrow x^2-4x-10=0\)

\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)

sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)

6 tháng 7 2017

3. \(\sqrt{14-x}-\sqrt{x-4}=\sqrt{x-1}\)

b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)

Đặt \(x^2+5x+4=a\) 

Theo đề, ta có \(5\sqrt{a+24}=a\)

=>25a+600=a2

=>a=40 hoặc a=-15

=>x2+5x-36=0

=>(x+9)(x-4)=0

=>x=4 hoặc x=-9

c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)

Đặt \(x^2+5x=a\)

Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)

\(\Leftrightarrow\sqrt[3]{8a}=a+2\)

=>(a+2)3=8a

=>\(a^3+6a^2+12a+8-8a=0\)

\(\Leftrightarrow a^3+6a^2+4a+8=0\)

Đến đây thì bạn chỉ cần bấm máy là xong

9 tháng 8 2017

2. ĐK: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)

pt trên được viết lại thành

\(2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)

Đến đây dễ rồi nhé ^^

25 tháng 7 2018

ĐKXĐ: \(x>4\)

\(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Leftrightarrow\)\((\dfrac{\sqrt{x+5}}{\sqrt{x-4}})^2=(\dfrac{\sqrt{x-2}}{\sqrt{x+3}})^2\)

\(\Leftrightarrow\dfrac{x+5}{x-4}=\dfrac{x-2}{x+3}\)

\(\Leftrightarrow\dfrac{x+5}{x-4}-\dfrac{x-2}{x+3}=0\)

\(\Leftrightarrow\dfrac{(x+5)\left(x+3\right)-\left(x-2\right)\left(x-4\right)}{(x-4)\left(x+3\right)}=0\)

\(\Leftrightarrow(x+5)\left(x+3\right)-\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow x^2+8x+15-x^2+6x-8=0\)

\(\Leftrightarrow14x-7=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)