Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
vào câu hỏi tương tự nhé bạn, với lại mình chưa học lớp 9
\(1\text{) }a=\sqrt{2x^2-4x+3}\Rightarrow x^2-2x=\frac{a^2-3}{2}\)
Pt trở thành \(\frac{a^2-3}{2}+3=2a\)
\(3\text{) }pt\Leftrightarrow2\left(x^2-2x+4\right)+\left(x+2\right)=3\sqrt{x+2}\sqrt{x^2-2x+4}\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x+4}+\sqrt{x+2}\right)\left(\sqrt{x^2-2x+1}-\sqrt{x+2}\right)=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)
Đặt \(x^2+5x+4=a\)
Theo đề, ta có \(5\sqrt{a+24}=a\)
=>25a+600=a2
=>a=40 hoặc a=-15
=>x2+5x-36=0
=>(x+9)(x-4)=0
=>x=4 hoặc x=-9
c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)
Đặt \(x^2+5x=a\)
Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)
\(\Leftrightarrow\sqrt[3]{8a}=a+2\)
=>(a+2)3=8a
=>\(a^3+6a^2+12a+8-8a=0\)
\(\Leftrightarrow a^3+6a^2+4a+8=0\)
Đến đây thì bạn chỉ cần bấm máy là xong
Đk: \(x\ge-1\)
pt<=> \(3\left(x^2+2x+2\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}\)
\(3\left(x^2+2x+2\right)=10\sqrt{\left(x+1\right)\left(x^2-x+2x+1\right)}\)
<=> \(3\left(x^2+2x+1\right)=10\sqrt{\left(x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x+1}=a\left(a\ge0\right)\),\(\sqrt{x^2+x+1}=b\)
=> \(a^2+b^2=x+1+x^2+x+1=x^2+2x+2\)
Có \(3\left(a^2+b^2\right)=10ab\)
<=>\(3a^2-10ab+3b^2=0\)
<=> \(3a^2-ab-9ab+3b^2=0\)
<=> \(a\left(3a-b\right)-3b\left(3a-b\right)=0\)
<=> \(\left(a-3b\right)\left(3a-b\right)=0\) <=> \(\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}\sqrt{x+1}=3\sqrt{x^2+x+1}\\3\sqrt{x+1}=\sqrt{x^2+x+1}\end{matrix}\right.\)
Giải nốt :))