Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
=>\(x^3-x+x-1=2x^2+x-1\)
=>x^3-2x^2-x=0
=>x(x^2-2x-1)=0
=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)
c: =>(x-1)(x-2) căn 2x-3=0
=>\(x\in\left\{\dfrac{3}{2};2\right\}\)
Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ:\(x\ne2;x\ne-2\)
\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)
\(\Leftrightarrow\)\(9x+18=0\)
\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.
b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)
PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)
\(\Leftrightarrow9x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)
c,\(ĐKXĐ:x\ge2\)
Bình phương 2 vế ta được:
\(x^2-4-x^2+2x-1=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)
a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x=0\)
b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)
\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )
\(\Leftrightarrow2x^2-5x+3=0\)
\(\Delta=b^2-4ac\)
\(\Delta=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{2}\)
c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)
\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )
\(\Leftrightarrow x^2-4x-2=x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)
Vậy \(x=5\)
d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)
\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )
\(\Leftrightarrow2x^2-x-3=2x-3\)
\(\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
a,\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)
<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)
<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{\left(2x-1\right)\left(1-x\right)}{2\left(1-x\right)}=\dfrac{2\left(1-x\right)}{2\left(1-x\right)}-\dfrac{2\left(x^2-x-3\right)}{2\left(1-x\right)}\)
=>\(5x-2+2x-2x^2-1+x=2-2x-2x^2+2x+6\)
<=>\(-2x^2+8x-3=-2x^2+8\)
<=>\(8x=11< =>x=\dfrac{11}{8}\)
vậy..........
b,\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)
<=>\(\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)
=>\(x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-x+1\)
<=>\(3x^2-25x-6=3x^2-x+1\)
<=>\(-24x=7< =>x=\dfrac{-7}{24}\)
vậy..................
câu c tương tự nhé :)
a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)
ĐKXĐ: \(x>1\)
\(3x^2+1=4\)
\(3x^2=3\)
\(x^2=1\)
\(x=\pm1\)
=> Pt vô nghiệm
b) ĐKXĐ: x>-4
\(x^2+3x+4=x+4\)
\(x^2+2x=0\)
\(x\left(x+2\right)=0\)
\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)
a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)
từ có ta có pt theo biến t : \(t^2+4+t-6=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
c: TH1: x>0
Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)
=>2x^2-4x=x^2-1
=>x^2-4x+1=0
hay \(x=2\pm\sqrt{3}\)
TH2: x<0
Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)
=>-2x(x-2)=x^2-1
=>-2x^2+4x=x^2-1
=>-3x^2+4x+1=0
hay \(x=\dfrac{2-\sqrt{7}}{3}\)
b:
TH1: 2x^3-x>=0
\(4x^4+6x^2\left(2x^3-x\right)+1=0\)
=>4x^4+12x^5-6x^3+1=0
\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)
TH2: 2x^3-x<0
Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)
=>4x^4+6x^3-12x^5+1=0
=>x=0,95(loại)
b)\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\\sqrt{x^2-3x+8}=x-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=\left(x-4\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=x^2-8x+16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\5x=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x=\dfrac{8}{5}\left(loại\right)\end{matrix}\right.\)=> pt vô nghiệm
c)\(\left\{{}\begin{matrix}8-x\ge0\\x^2-5x-2=\left(8-x\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x^2-5x-2=x^2-16x+64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\11x=66\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=6\left(nhận\right)\end{matrix}\right.\)
a) \(\dfrac{5+x}{4-x}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(5+x\right)=4-x\)
\(\Leftrightarrow2\left(5+x\right)-\left(4-x\right)=0\)
\(\Leftrightarrow10+2x-4+x=0\)
\(\Leftrightarrow6+3x=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
b) \(\dfrac{25}{14}=\dfrac{x+7}{x-4}\)
\(\Leftrightarrow25\left(x-4\right)=14\left(x+7\right)\)
\(\Leftrightarrow25\left(x-4\right)-14\left(x+7\right)=0\)
\(\Leftrightarrow25x-100-14x-98=0\)
\(\Leftrightarrow11x-198=0\)
\(\Leftrightarrow11x=198\)
\(\Leftrightarrow x=18\)
Vậy x=18
c) \(\dfrac{3x-5}{x+4}=\dfrac{5}{2}\)
\(\Leftrightarrow2\left(3x-5\right)=5\left(x+4\right)\)
\(\Leftrightarrow2\left(3x-5\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow6x-10-5x-20=0\)
\(\Leftrightarrow x-30=0\)
\(\Leftrightarrow x=30\)
Vậy x=30
d) \(\dfrac{3x-1}{2x+1}=\dfrac{3}{7}\)
\(\Leftrightarrow7\left(3x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow7\left(3x-1\right)-3\left(2x+1\right)=0\)
\(\Leftrightarrow21x-7-6x-3=0\)
\(\Leftrightarrow15x-10=0\)
\(\Leftrightarrow15x=10\)
\(\Leftrightarrow x=\dfrac{10}{15}=\dfrac{2}{3}\)
Vậy \(x=\dfrac{2}{3}\)
ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow2x=\dfrac{3x}{x-1}-\dfrac{3}{x-1}\)
\(\Leftrightarrow2x=\dfrac{3\left(x-1\right)}{x-1}\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\)