Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt x-3=a; x+1=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)
a) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 6x2 - x - 2 = 10x2 - 11x - 8
<=> 6x2 - 10x2 - x + 11x -2 + 8 = 0
<=> -4x2 + 10x + 6 = 0
<=> -2 (2x2 - 5x - 3) = 0
<=> 2x2 - 5x - 3 = 0
<=> 2x2 - 6x + x - 3 = 0
<=> x (2x + 1) - 3 (2x + 1) = 0
<=> (x - 3) (2x + 1) = 0
* x - 3 = 0 => x = 3
* 2x + 1 = 0 => x = -1/2
S = {-1/2; 3}
b) 4x2 – 1 = (2x +1)(3x -5)
<=> 4x2 – 1 - (2x +1)(3x -5) = 0
<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0
<=> (2x + 1) (2x - 1 - 3x + 5) = 0
<=> (2x + 1) (-x + 4) = 0
* 2x + 1 = 0 <=> x = -1/2
* -x + 4 = 0 <=> x = 4
S = {-1/2; 4}
c) (x + 1)2 = 4(x2 – 2x + 1)
<=> (x + 1)2 - 4(x2 – 2x + 1) = 0
<=> (x + 1)2 - 4(x2 – 1)2 = 0
* (x + 1)2 = 0 <=> x = -1
* 4(x2 - 1)2 = 0 <=> x = 1 và x = -1
S = {-1; 1}
d) 2x3 + 5x2 – 3x = 0
<=> x (2x2 + 5x - 3) = 0
<=> x (2x2 + 6x - x - 3) = 0
<=> x [x(2x - 1) + 3 (2x - 1)] = 0
<=> x (2x - 1) (x + 3) = 0
* x = 0
* 2x - 1 = 0 <=> x = 1/2
* x + 3 = 0 <=> x = -3
S = { -3; 0; 1/2}
a, 3-4x(25-2x)=8x^2+x-30
<=> 3-100x+8x^2=8x^2+x-30
<=>3-100x+8x^2-8x^2-x+30=0
<=>-101x+33=0
<=>-101x=-33
<=>x=\(\dfrac{33}{101}\)
Vậy S={\(\dfrac{33}{101}\) }
b,(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)[(3x-2)-(5x-8)]=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(-2x+6)=0
=> 2x+1=0 hoặc -2x+6=0
+) 2x+1=0
<=>2x=-1
<=>x=-1/2
+)-2x+6=0
<=>-2x=-6
<=>x=3
vậy S={-1/2;3}
c,d, do mình lười quá nên mình ghi luôn kết quả nhé : c, x= \(\dfrac{1}{2}\)
d, x=5
a/ \(2x-3=5x+2\)
\(\Leftrightarrow5x-2x=-3-2\)
\(\Leftrightarrow3x=-5\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy..
b. \(2x\left(x-1\right)=2x+2\)
\(\Leftrightarrow2x^2-4x-2=0\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1+\sqrt{2}\right)\left(x-1-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{2}\\x=1+\sqrt{2}\end{matrix}\right.\)
Vậy...
c/ ĐKXĐ : \(x\ne\pm2\)
\(\dfrac{x+2}{x-2}-\dfrac{x^2}{x^2-4}=\dfrac{6}{\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+4x+4-x^2=6x-12\)
\(\Leftrightarrow2x-16=0\)
\(\Leftrightarrow x=8\)
Vậy..