\(2+\sqrt{x+2}=x\sqrt{x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

21 tháng 10 2018

a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)

\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-4x+1=x+1\)

\(\Leftrightarrow x^2-4x-x=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện

Vậy x=0 hoặc x=5

2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)

Đk: x>=3 hoặc x=1

pt  (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )

<=> x-1=0

<=> x=1 ( thỏa mãn điều kiện)

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

19 tháng 11 2016

Điều kiện \(\hept{\begin{cases}2+x\ge0\\2-x\ge0\end{cases}}\Leftrightarrow-2\le x\le2\)

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\left(a\ge0\right)\\\sqrt{2-x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2+b^2=4}\)thì

\(1PT\Leftrightarrow\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}b^2-a^2b+ab^2=2\sqrt{2}-2b+2a-\sqrt{2}ab\)

\(\Leftrightarrow2\sqrt{2}-a^2b+ab^2+2b-2a+\sqrt{2}ab=0\)

\(\Leftrightarrow\sqrt{2}\left(2+ab\right)+ab\left(b-a\right)+2\left(b-a\right)=0\)

\(\Leftrightarrow\sqrt{2}\left(2+ab\right)+\left(b-a\right)\left(2+ab\right)=0\)

\(\Leftrightarrow\left(2+ab\right)\left(\sqrt{2}+b-a\right)=0\)

\(\Leftrightarrow a-b=\sqrt{2}\)(vì 2 + ab > 0)

\(\Leftrightarrow\sqrt{2+x}-\sqrt{2-x}=\sqrt{2}\)

\(\Leftrightarrow4-2\sqrt{4-x^2}=2\)

\(\Leftrightarrow\sqrt{4-x^2}=1\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{3}\left(l\right)\end{cases}}\)

19 tháng 11 2016

kết quả đúng 

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 1:

ĐKXĐ: $-2\leq x\leq 2$

Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$

Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)

\(\Rightarrow (2-ab)^2-2ab=4\)

\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)

Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$

$\Rightarrow x=2$

Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)

Vậy $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 2:

ĐK: $x\geq \frac{-1}{3}

PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)

\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)

Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$

Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$

$\Rightarrow x+3=4(3x+1)$

$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)

Vậy..........

NV
3 tháng 3 2019

a/ ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:

\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)

\(\Leftrightarrow-2=-2\) (đúng)

- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)

- Nếu \(0< x< 8\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)

\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)

Vậy nghiệm của pt đã cho là \(x\ge8\)

NV
3 tháng 3 2019

b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)

Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:

\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)

\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)

\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)

Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)