Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\Rightarrow\frac{2x+2y+1}{2xy}=\frac{1}{2}\)
\(\Rightarrow2\left(2x+2y+1\right)=2xy\)(tích thung tỉ bằng tích ngoại tỉ)
\(\Rightarrow2x+2y+1=2xy\)
\(\Rightarrow2xy-2x-2y=1\)
\(\Rightarrow2x\left(y-1\right)-2\left(y-1\right)=3\)
\(\Rightarrow\left(y-1\right)\left(2x-2\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Bạn tự lập bảng nhé!
\(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)
\(\Leftrightarrow2y+2x+1-xy=0\)
\(\Leftrightarrow x\left(2-y\right)=-2y-1\)
\(x,y\in Z\) nên
\(\left(-2y-1\right)⋮\left(2-y\right)\)
đến đây lập bảng là xog. cũng giống như tìm để nó \(\in Z\) đó mà
Đề này thầy mk cho lm rồi nhưng chưa chữa. Mà mk cx ko lm đc.
x2 + ( x + 1 )2 = y4 + ( y + 1 )4
\(\Leftrightarrow\)2x2 + 2x + 1 = 2y4 + 4y3 + 6y2 + 4y + 1
\(\Leftrightarrow\)2x2 + 2x + 2 = 2y4 + 4y3 + 6y2 + 4y + 2
\(\Leftrightarrow\)2 . ( x2 + x + 1 ) = 2 ( y4 + 2y3 + 3y2 + 2y + 1 )
\(\Leftrightarrow\) x2 + x + 1 = ( y2 + y + 1 )2
\(\Leftrightarrow\)4 . ( x2 + x + 1 ) = 4 . ( y2 + y + 1 )2
\(\Leftrightarrow\) ( 2x + 1 )2 + 3 = [ 2 . ( y2 + y + 1 ) ]2
\(\Leftrightarrow\) [ 2 . ( y2 + y + 1 ) ]2 - ( 2x + 1 )2 = 3
\(\Leftrightarrow\)( 2y2 + 2y - 2x + 1 ) ( 2y2 + 2y + 2x + 3 ) = 3
sau đó lập bảng mà làm nhé
a) với a = -2 ta được phương trình:
3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3
<=> 3.(-4x) - 4.(x - 1) = (-8) + 3
<=> -12x - 4(x - 1) = -5
<=> -12x - 4x + 4 = -5
<=> -16x + 4 = -5
<=> -16x = -5 - 4
<=> -16x = -9
<=> x = 9/16
b) để x = 1, ta có:
3.(a - 2).1 + 2a(1 - 1) = 4a + 3
<=> 3(a - 2) + 0 = 4a + 3
<=> 3a - 6 = 4a + 3
<=> 3a - 6 - 4a = 3
<=> -a - 6 = 3
<=> -a = 3 + 6
<=> a = -9
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.