Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x>=1
\(\Leftrightarrow16x-13\sqrt{x-1}-9\sqrt{x+1}=0\)
\(\Leftrightarrow13\left(x-1-\sqrt{x-1}+\dfrac{1}{4}\right)+3\left(x+1-3\sqrt{x+1}+\dfrac{9}{4}\right)=0\)
\(\Leftrightarrow13\left(\sqrt{x-1}-\dfrac{1}{2}\right)^2+3\left(\sqrt{x+1}-\dfrac{3}{2}\right)^2=0\)
\(\left\{{}\begin{matrix}\sqrt{x-1}=\dfrac{1}{2}\\\sqrt{x+1}=\dfrac{3}{2}\end{matrix}\right.\)
x=5/4(tm)
a) ĐKXĐ : \(7\le x\le9\)
đặt \(A=\sqrt{x-7}+\sqrt{9-x}\)
\(\Rightarrow A^2=2+2\sqrt{\left(x-7\right)\left(9-x\right)}\le2+\left(x-7\right)+\left(9-x\right)=4\)
\(\Rightarrow A\le2\)
Mà \(x^2-16x+66=\left(x-8\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\)
do đó : \(x-7=9-x\Leftrightarrow x=8\)( t/m )
b) ĐKXĐ : \(x\le1\)
Ta có : \(\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}-\left|x-2\right|\sqrt{\frac{x-1}{x-2}}=3\)
\(\Leftrightarrow\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{\left(x-1\right)\left(x-2\right)}=3\)
\(\Leftrightarrow\sqrt{1-x}=3\Leftrightarrow x=-8\left(tm\right)\)
pt tương đương với \(9\sqrt{x+1}\)\(+13\sqrt{x-1}=16x\)
\(\Leftrightarrow\left(9\sqrt{x+1}-\frac{27}{2}\right)+\left(13\sqrt{x+1}-\frac{13}{2}\right)=16x-20\)
\(\Leftrightarrow9\left(\sqrt{x+1}-\frac{3}{2}\right)+13\left(\sqrt{x-1}-\frac{1}{2}\right)=16\left(x-\frac{5}{4}\right)\)
\(\Leftrightarrow9.\frac{x+1-\frac{9}{4}}{\sqrt{x+1}+\frac{3}{2}}+13.\frac{x-1-\frac{1}{4}}{\sqrt{x-1}+\frac{1}{2}}-16\left(x-\frac{5}{4}\right)=0\)
\(\Leftrightarrow\left(x-\frac{5}{4}\right)\left(\frac{9}{\sqrt{x+1}+\frac{3}{2}}+\frac{13}{\sqrt{x-1}+\frac{1}{2}}-16\right)=0\)
= 0 nha bn
k cho mik nha
thank you very much
a/ \(0\le x\le2019^2\)
Đặt \(\sqrt{x}=t\ge0\Rightarrow t^2-2019+\sqrt{2019-t}=0\)
Đặt \(\sqrt{2019-t}=a\Rightarrow2019=a^2+t\) ta được:
\(t^2-\left(a^2+t\right)+a=0\)
\(\Leftrightarrow t^2-a^2-\left(t-a\right)=0\)
\(\Leftrightarrow\left(t-a\right)\left(t+a\right)-\left(t-a\right)=0\)
\(\Leftrightarrow\left(t-a\right)\left(t+a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=t\\a=1-t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2019-t}=t\\\sqrt{2019-t}=1-t\left(t\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2+t-2019=0\\t^2-t-2018=0\end{matrix}\right.\) \(\Rightarrow t=...\Rightarrow x=t^2=...\)
Giải pt vô tỉ sau : \(\sqrt{-4x^4y^2+16x^2y+9}\)_\(\sqrt{x^2y^2-2y^2}\)=2(\(x^2\)+\(\frac{1}{x^2}\))
cách giải hay nè: =
=
=
Đặt =
=> =
=> = .ta có hệ:
Đến Đây thì đơn giản rồi.chứ nân ra thì muốn ói
Ta có:
\(\left(x-1\right)+\frac{1}{4}\ge\sqrt{x-1}\)
\(\Leftrightarrow13\left(x-1\right)+\frac{13}{4}\ge13\sqrt{x-1}\)
\(\Leftrightarrow13x-\frac{39}{4}\ge13\sqrt{x-1}\)(1)
Ta lại có
\(\left(x+1\right)+\frac{9}{4}\ge3\sqrt{x+1}\)
\(3\left(x+1\right)+\frac{27}{4}\ge9\sqrt{x+1}\)
\(\Leftrightarrow3x+\frac{39}{4}\ge9\sqrt{x+1}\)(2)
Cộng (1) và (2) vế theo vế được
\(16x\ge13\sqrt{x-1}+9\sqrt{x+1}\)
Dấu = xảy ra khi
\(\hept{\begin{cases}x-1=\frac{1}{4}\\x+1=\frac{9}{4}\end{cases}}\Leftrightarrow x=\frac{5}{4}\)