\(0,05\left(\frac{2x-2}{2011}+\frac{2x}{2012}+\frac{2x+2}{2013}\right)=3,3-\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020
https://i.imgur.com/e7kp0cu.jpg

Bạn hỏi hay trả lời luôn dzậy?

29 tháng 6 2015

1/

\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)

\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

Phương trình đã cho  tương đương:

 \(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=4\)

2/ 

\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)

\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)

3/

Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(=2.\frac{n+1}{n+2}<2\) (do \(\frac{n+1}{n+2}=1-\frac{1}{n+2}<1\))

24 tháng 1 2017

Giúp với

15 tháng 4 2018

Có điều kiện là a>0 và b>0 nữa nha

Theo bđt cô si ta có : \(a+b\ge2\sqrt{ab}\)  (1)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) (2) 

Nhân vế theo vế 1 và 2 ta có : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{ab}}=4\cdot\sqrt{\frac{ab}{ab}}=4\)

Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) đpcm

15 tháng 4 2018

ta có\(\frac{x-2013}{-3}+\frac{x-2012}{-4}=\frac{x-2011}{-5}-\frac{x-1}{-2015}\)

\(\Leftrightarrow\frac{x-2013}{-3}+1+\frac{x-2012}{-4}+1=\frac{x-2011}{-5}+1-\frac{x-1}{-2015}+1\)

\(\Leftrightarrow\frac{x-2013-3}{-3}+\frac{x-2012-4}{-4}=\frac{x-1-2015}{-5}-\frac{x-1-2015}{-2015}\)

\(\Leftrightarrow\frac{x-2016}{-3}+\frac{x-2016}{-4}=\frac{x-2016}{-5}-\frac{x-2016}{-2015}\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{-3}+\frac{1}{-4}-\frac{1}{-5}+\frac{1}{-2015}\right)=0\)

\(\Leftrightarrow x-2016=0\)

\(\Leftrightarrow x=2016\)

Vậy tập nghiệm của phương trình đã cho là là:\(S=\left(2016\right)\)

2 tháng 3 2020

\(a,⇔\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

\(⇔(x-23)(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27})=0\)

\(⇔x-23=0\) (vì \(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\))

\(⇔x=23\)

\(b,⇔\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}+\frac{x+100}{95}=0\)

\(⇔(x+100)(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95})=0\)

\(⇔x+100=0\) (vì \(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}>0\))

\(⇔x=-100\)

\(c,⇔(\frac{x+1}{2012}+1)+(\frac{x+2}{2011}+1)=(\frac{x+3}{2010}+1)+(\frac{x+4}{2009}+1)\)

\(⇔\frac{x+2013}{2012}+\frac{x+2013}{2011}-\frac{x+2013}{2010}-\frac{x+2013}{2009}=0\)

\(⇔(x+2013)(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009})=0\)

\(⇔x+2013=0\) (vì \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}<0\))

\(⇔x=-2013\)

2 tháng 3 2020

\(\frac{201-x}{99}+\frac{203}{97}=\frac{205}{95}+3\)

\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

\(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)

Giúp mk với ạ