K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

\(\Leftrightarrow\sqrt{x+2}+\sqrt{\left(x+2\right)^2}=2x+2\) +2 

\(\Leftrightarrow\)\(\sqrt{x+2}+x+2=2x+2\)

\(\Leftrightarrow\)\(\sqrt{x+2}=x\)(\(x\ge0\))

bình phương 2 vế 

x+2=\(x^2\)

giải phương trình 

\(\orbr{\begin{cases}2\left(tm\right)\\-1\left(loại\right)\end{cases}}\)

bước giải phương trình bạn tự làm nha . hok tốt

27 tháng 11 2019

dấu tương đương số 1 vế phải là 2x+2 thôi nha

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu a:

Ta có:

\((x-3)^2+x^4=-y^2+6y-4\)

\(\Leftrightarrow (x-3)^2+x^4+y^2-6y+4=0\)

\(\Leftrightarrow x^4+x^2-6x+9+y^2-6y+4=0\)

\(\Leftrightarrow x^4+x^2-6x+4+(y^2-6y+9)=0\)

\(\Leftrightarrow (x^4-2x^2+1)+3(x^2-2x+1)+(y^2-6y+9)=0\)

\(\Leftrightarrow (x^2-1)^2+3(x-1)^2+(y-3)^2=0\)

\(\Rightarrow (x^2-1)^2=(x-1)^2=(y-3)^2=0\)

\(\Rightarrow \left\{\begin{matrix} x=1\\ y=3\end{matrix}\right.\)

Vậy..........

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu b:

ĐKXĐ: \(\frac{3}{2}\leq x\leq \frac{5}{2}\)

\(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)

\(\Leftrightarrow \sqrt{2x-3}+\sqrt{5-2x}=x^2-4x+6\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}^2\leq (1+1)(2x-3+5-2x)=4\)

\(\Rightarrow \text{VT}\leq 2\)

\(\text{VP}=x^2-4x+6=(x-2)^2+2\geq 2\)

Do đó để \(\text{VT}=\text{VP}\) thì \(\text{VT}=2=\text{VP}\)

Điều này xảy ra khi \(\left\{\begin{matrix} \sqrt{2x-3}=\sqrt{5-2x}\\ (x-2)^2=0\end{matrix}\right.\Rightarrow x=2\) (t/m)

Vậy pt có nghiệm duy nhất $x=2$

Ta có: \(\sqrt{1-2x+x^2}+\sqrt{4+4x+x^2}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)(*)

Trường hợp 1: x<-2

(*)\(\Leftrightarrow1-x+\left(-x-2\right)=3\)

\(\Leftrightarrow1-x-x-2=3\)

\(\Leftrightarrow-2x-1=3\)

\(\Leftrightarrow-2x=4\)

hay x=-2(loại)

Trường hợp 2: \(-2\le x< 1\)

(*)\(\Leftrightarrow1-x+x+2=3\)

\(\Leftrightarrow3=3\)(nhận hết các giá trị của x thỏa mãn \(-2\le x< 1\))

Trường hợp 3: \(x\ge1\)

(*)\(x-1+x+2=3\)

\(\Leftrightarrow2x+1=3\)

\(\Leftrightarrow2x=2\)

hay x=1(nhận)

Vậy: S={x|\(-2\le x\le1\)}

13 tháng 8 2017

\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)

\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)

dat \(\left(x-1\right)\left(x+1\right)=y\)

\(4y-3x=\sqrt[3]{x^2y}\)

\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)

\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)

\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)

de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)

\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\) 

\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

câu b tương tự nhé bạn

6 tháng 10 2019

Park Ji Woo ghi rõ đề ra bn ơi

6 tháng 10 2019

GIẢI CÁC PHƯƠNG TRÌNH NHƯ KIỂU TÌM X Á

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)