![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a, Ta có :}\) \(M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\text{Đặt }a=x^2+10x+16\)
\(\text{Ta có: }M=a\left(a+8\right)+16=a^2+8a+16=\left(a+4\right)^2\)
\(M=\left(x^2+10x+20\right)^2\)
\(\text{b, }\)\(\left|x+1\right|=\left|x\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x\left(x+1\right)\right|-\left|x+1\right|=0\)
\(\Leftrightarrow\left|x\right|.\left|x+1\right|-\left|x+1\right|=0\)
\(\Rightarrow\left|x+1\right|\left(\left|x\right|-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\\left|x\right|-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)(đk: x \(\ne\)-1; x \(\ne\)3)
\(\Leftrightarrow\)\(\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\) x(x + 1) - x(x - 3) = 4x
\(\Leftrightarrow\) x2 + x - x2 + 3x = 4x
\(\Leftrightarrow\) 3x - 4x = 0
\(\Leftrightarrow\) -x = 0
\(\Leftrightarrow\) x = 0 (tmđk)
Vậy phương trên có n0 là x = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne1,\text{ }x\ne-2\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=\frac{x\left(x-1\right)}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=x+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Rightarrow2\left(x+2\right)+\left(x-1\right)=0\)
\(\Leftrightarrow2x+4+x-1\)
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3x=\text{-3}\Leftrightarrow x=\text{-1}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1\right\}\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(-x\right)\left(đk:x\ne1;-2\right)\)
\(\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x\left(x-1\right)}{x-1}-x\)
\(< =>\frac{2x+4+x-1}{\left(x-1\right)\left(x+2\right)}=x-x=0\)
\(< =>2x+4+x-1=0\)
\(< =>3x=1-4=-3\)
\(< =>x=\frac{-3}{3}=-1\left(tmđk\right)\)
Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
phương trình tương đương với 1+\(\frac{1}{x}+1+\frac{1}{x+3}\)=1+\(\frac{1}{x+1}+1+\frac{1}{x+2}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+2}+\frac{1}{x+1}\)
\(\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x\left(x+3\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)=0
\(\Leftrightarrow\left(2x+3\right)\left(\frac{\left(x+1\right)\left(x+2\right)-x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{2}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)\(\Leftrightarrow2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(x^2-3x+3=0\)
\(\Leftrightarrow x^2-3x+\dfrac{9}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\) ( Vô lý , \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\) )
\(\Rightarrow\) Pt vô nghiệm
b ) \(x-\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x-2\left(x-2\right)=0\)
\(\Leftrightarrow x-2x+4=0\)
\(\Leftrightarrow4-x=0\)
\(\Leftrightarrow x=4\)
Vậy ...
c ) \(\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy ...
d ) \(x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x^2+5x+4\right)\left(x^2-4x+4\right)=10x^2\)
x= 0 không phải nghiệm
chia hai vế cho x^4
\(\left(x+\dfrac{4}{x}+5\right)\left(x+\dfrac{4}{x}-4\right)=10\)
Đặt x+4/x =t
\(t^2+t-20=10\)\(\Rightarrow\left[{}\begin{matrix}t=5\\t=-6\end{matrix}\right.\)
Thay lại tìm x tự làm
bn giải đúng r nhưng ở kia fải là chia 2 vế cho x^2
Nói chung cảm ơn!!!
PT <=> \(\left(x+1\right)^2=\left[x\left(x+1\right)\right]^2\)
\(\Leftrightarrow\left(x+1\right)^2=x^2\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-x^2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(1-x\right)\left(x+1\right)^3=0\Leftrightarrow x=\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 }
có 1 cách giải khác nữa áp dụng với công thức tổng quát này
\(\left|f\left(x\right)\right|=\left|g\left(x\right)\right|\Rightarrow\orbr{\begin{cases}f\left(x\right)=g\left(x\right)\\f\left(x\right)=-g\left(x\right)\end{cases}}\)