Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK...
đặt \(\sqrt{x^2-x-6}=a\left(a\ge0\right)\)
Ta có pt <=> \(a^2+a-12=0\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\Leftrightarrow a-3=0\left(vi:a+3>0\right)\)
đến đây tự làm nhá
8n
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)
\(x^3-2x-4=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left[\left(x+1\right)^2+1\right]=0\)\(\Leftrightarrow x=2\text{ (do }\left(x+1\right)^2+1>0\text{ )}\)
\(x^3-7x-6=x^3-3x^2+3x^2-9x+2x-6=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+2\right)\right]=\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=3\text{ hoặc }x=-1\text{ hoặc }x=-2\)
a) Đặt x4 = t ( t ≥ 0 )
pt <=> t2 - 17t + 16 = 0 (*)
Dễ thấy (*) có a + b + c = 0 nên có hai nghiệm t1 = 1 ( tm ) hoặc t2 = 16 ( tm )
=> x4 = 1 hoặc x4 = 16
=> x = ±1 hoặc x = ±2
Vậy ...
b) Đặt t = x3
pt <=> t2 - 4t + 3 = 0 (*)
Dễ thấy (*) có a + b + c = 0 nên có hai nghiệm phân biệt t1 = 1 ; t2 = 3
=> x3 = 1 hoặc x3 = 3
=> x = 1 hoặc x = \(\sqrt[3]{3}\)
không chắc nhé
a) \(x^2-6x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+2\sqrt{3}}{2}\\x=\frac{6-2\sqrt{3}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
Đặt \(x^3=a\)
Pt đã cho trở thành \(a^2+61a-8000=0\)
\(\Leftrightarrow\left(a-64\right)\left(a+125\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=64\\a=125\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^3=64\\x^3=-125\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)
x6+61x3-8000=0
=>x6+2.30,5x3+30,52-8930,25=0
=>(x3+30,5)2=8930,25
=>x3+30,5=94,5
=>x3=64
=>x=4