Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2015x^2+2014x+2015=0\)
\(\Leftrightarrow\)\(\left(x^4+x^2+1\right)+\left(2014x^2+2014x+2014\right)=0\)
\(\Leftrightarrow\)\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2014\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x^2+x+1\right)\left(x^2-x+2015\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\left(x-\frac{1}{2}\right)^2+2014\frac{3}{4}>0\)
Vậy pt vô nghiệm
x4+2014x2-2014x-x+2014
=x(x3-1)+2014(x2-x-1)
=x(x-1)(x2-x-1)+2014(x2-x-1)
=(x2-x-1)(x2-x+2014)
a)Đặt \(A=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1\)
\(A=\dfrac{1}{8}\left(x^3-6x^2+12x-8\right)\)
\(A=\dfrac{1}{8}\left(x-2\right)^3\)
b,\(x^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)
\(\frac{x^2-x-6}{x-3}=\frac{x^2-3x+2x-6}{x-3}=\frac{x\left(x-3\right)+2\left(x-3\right)}{\left(x-3\right)}=x+2=0\Leftrightarrow x=-2\)
\(\frac{x^2+2x-\left(3x+6\right)}{x+2}=\frac{x\left(x+2\right)-3\left(x+2\right)}{x+2}=x-3=0\Leftrightarrow x=3\)
\(\frac{4}{x-2}-\left(x-2\right)=0\Leftrightarrow\frac{4}{a}-a=0\left(a=x-2\right)\Leftrightarrow\frac{4}{a}=a\Leftrightarrow a^2=4\Leftrightarrow a=\pm2\Leftrightarrow x=4\text{ hoặc 0}\)
a) ĐKXĐ: x \(\ne\)3
Ta có: \(\frac{x^2-x-6}{x-3}=0\)
<=> x2 - x - 6 = 0
<=> x2 - 3x + 2x - 6 = 0
<=> (x + 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=3\left(vn\right)\end{cases}}\)
Vậy S = {-2}
b) ĐKXĐ: x \(\ne\)-2
Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x+2}=0\)
<=> \(x\left(x+2\right)-3\left(x+2\right)=0\)
<=> \(\left(x-3\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=-2\left(vn\right)\end{cases}}\)
Vậy S = {3}
c) ĐKXĐ: x \(\ne\)2
Ta có: \(\frac{4}{x-2}-x+2=0\)
<=> \(\frac{4-\left(x-2\right)^2}{x-2}=0\)
<=> \(\left(2-x+2\right)\left(2+x-2\right)=0\)
<=> \(x\left(4-x\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\4-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy S = {0; 4}
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
Bài làm:
Ta có: \(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)
\(\Leftrightarrow\frac{28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)}{15.7.4}=-6\)
\(\Leftrightarrow28x+28+60x+120+105x+420=-2520\)
\(\Leftrightarrow193x=-3088\)
\(\Rightarrow x=-16\)