\(x^4-6x^3+12x^2-14x+2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

PT <=> (x4 - 2x3 + 3x2) + (- 4x3 + 8x2 - 12x) + (x- 2x + 3) = 0

<=> (x2 - 2x + 3)(x2 - 4x + 1) = 0

20 tháng 9 2016

bạn ơi nhầm rồi đề bài là cộng 2 chứ có phải cộng 3 đâu

NV
4 tháng 3 2019

a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)

\(\Leftrightarrow\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)

c/ \(3x^2-6x+3-2=0\)

\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)

d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)

\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)

4 tháng 3 2019

Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT

5 tháng 9 2019

<=> x4+3x3=14x2+6x-4

\(\Leftrightarrow x^4+3x^3-\frac{7}{4}x^2-6x+4=\frac{49}{4}x^2\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2=\frac{49}{4}x^2\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2-\frac{49}{4}x^2=0\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2+\frac{7}{2}x\right)\left(x^2+\frac{3}{2}x-2-\frac{7}{2}x\right)=0\)

\(\Leftrightarrow\left(x^2+5x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x-2=0\\x^2-2x-2=0\end{cases}}\)

Đến đây bn tự làm tiếp nha

tk mk vs 

Bài 1:

a) \(\Delta=b^2-4ac=\left(-5\right)^2-4\cdot2\cdot1=25-8=17\)

Vì Δ>0 nên phương trình \(2x^2-5x+1=0\) có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}\\x_2=\frac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\frac{5-\sqrt{17}}{2\cdot2}=\frac{5-\sqrt{17}}{4}\\x_2=\frac{5+\sqrt{17}}{2\cdot2}=\frac{5+\sqrt{17}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{5-\sqrt{17}}{4};\frac{5+\sqrt{17}}{4}\right\}\)

b) Ta có: \(4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

hay \(x=-\frac{1}{2}\)

Vậy: \(S=\left\{\frac{-1}{2}\right\}\)

c) Ta có: \(-3x^2+2x+8=0\)

\(\Leftrightarrow-3x^2+6x-4x+8=0\)

\(\Leftrightarrow-3x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-3x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\-3x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{-4}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{-4}{3}\right\}\)

d) Ta có: \(5x^2-6x-1=0\)

\(\Delta=b^2-4\cdot a\cdot c=\left(-6\right)^2-4\cdot5\cdot\left(-1\right)=56\)

Vì Δ>0 nên phương trình \(5x^2-6x-1=0\) có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}\\x_2=\frac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\frac{6-\sqrt{56}}{2\cdot5}=\frac{3-\sqrt{14}}{5}\\x_2=\frac{6+\sqrt{56}}{2\cdot5}=\frac{3+\sqrt{14}}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3-\sqrt{14}}{5};\frac{3+\sqrt{14}}{5}\right\}\)

e) Ta có: \(-3x^2+14x-8=0\)

\(\Leftrightarrow-3x^2+12x+2x-8=0\)

\(\Leftrightarrow-3x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(-3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\-3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\-3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{4;\frac{2}{3}\right\}\)

g) Ta có: \(-7x^2+4x-3=0\)

\(\Delta=b^2-4ac=4^2-4\cdot\left(-7\right)\cdot\left(-3\right)=-68\)

Vì Δ<0 nên phương trình \(-7x^2+4x-3=0\) không có nghiệm

Vậy: S=∅

21 tháng 6 2020

Cảm ơn nhá

2 tháng 4 2019

\(6x^4+25x^3+12x^2-25x+6=0.\)

\(\Leftrightarrow\left(2x^2+x-2\right)\left(3x^2+8x-3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)\left(x+3\right)\left(3x-1\right)=0\)

15 tháng 7 2019

x - 1 + 3(6x + 6)=0

Phương trình trên có nghiệm bằng 1

Ta có thể phần tích thành ( x - 1 ) f(x)  bằng 0

\(\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)

Bạn trục căn thức là ra ( x- 1)

16 tháng 6 2017

đặt \(t=\sqrt{5x^2+6x+5}\). khi đó pt tương đương:

\(t=\frac{64x^3+4x}{t^2+1}\)hay \(t^3+t=64x^3+4x\Leftrightarrow\left(64x^3-t^3\right)+\left(4x-t\right)=0\)

\(\left(4x-t\right)\left(16t^2+4xt+2\right)\)

đến đây tự giải tiếp bạn nhé.
 

Y
22 tháng 5 2019

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)

\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)

\(\Leftrightarrow\left|2x-1\right|=5x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

22 tháng 5 2019

a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)

\(\Leftrightarrow x+3=4\)

\(\Rightarrow x=1\)

4 tháng 8 2019

\(8x^3-12x^2+6x-5=0\)

\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1=4\)

\(\Leftrightarrow\left(2x-1\right)^3=4\)

\(\Leftrightarrow2x-1=\sqrt[3]{4}\)

\(\Leftrightarrow2x=\sqrt[3]{4}+1\)

\(\Leftrightarrow x=\frac{\sqrt[3]{4}+1}{2}\)

5 tháng 8 2019

8x312x2+6x5=08x3−12x2+6x−5=0

(2x)33.(2x)2.1+3.2x.121=4⇔(2x)3−3.(2x)2.1+3.2x.12−1=4

(2x1)3=4⇔(2x−1)3=4

2x1=34⇔2x−1=43

2x=34+1⇔2x=43+1

x=34+12