\(x^4-4x^3+12x-9=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

(x4-9)+(-4x3+12x)=0

(x2-3)(x2+3)-4x(x2+3)=0

(x2+3).(x2-4x-3)=0

mà x2+3 > 0 với mọi x nên x2-4x-3=0

bạn giải nốt nhé

14 tháng 3 2019

mk là sai

(x2+3)(x2-3)-4x(x2-3)=0

(x2-3)(x2-4x+3)=0

\(x=\sqrt{3};-\sqrt{3};3;1\)

5 tháng 3 2020

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)

\(\Rightarrow x=\pm1\)

5 tháng 3 2020

Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;

26 tháng 2 2019

c) (x+1)(x+2)(x+4)(x+5)=40

<=> (x+1)(x+5)(x+2)(x+4)=40

<=>(x^2+6x+5)(x^2+6x+8)=40

Đặt x^2+6x+5=y

=>y(y+3)=40

=>y^2+3y=40<=>y^2+2.\(\frac{3}{2}\)y+\(\frac{9}{4}\)=40+\(\frac{9}{4}\)<=> (y+\(\frac{3}{2}\))2=42,25<=> y+\(\frac{3}{2}\)=6,5 hoặc -6,5

Bạn tự làm tiếp nha :333

23 tháng 11 2019

a)x- 4x- 19x+106x - 120 = 0

=>x4 -2x3 -2x3+4x2 -23x2 +46x +60x - 120 = 0

=>x3(x-2) -2x2(x-2) -23x(x-2) +60(x-2)= 0

=>(x3- 2x2 -23x+ 60)(x-2) =0

=>(x3 - 3x2 +x2 -3x -20x+60)(x -2) = 0

=>(x+x -20)(x-3)(x-2) = 0

=>(x2 -4x +5x -20)(x-3)(x-2) = 0

=>(x+5)(x-4)(x-3)(x-2) =0

=>x= -5; 4; 3; 2

b)=>4x4 -4x3 +16x3 -16x2 +21x2 -21x +15x -15= 0

=>(x-1)(4x3 +16x2 +21x+15)= 0

=>...bạn tự làm phần tiếp theo nhé

c)Làm giống nguyễn thị ngọc linh

b) Ta có: \(x^3-7x+6=0\)

\(\Leftrightarrow x^3-6x-x+6=0\)

\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+3x-2x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=2\end{matrix}\right.\)

Vậy: x∈{1;-3;2}

c) Ta có: \(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)

\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=\pm\sqrt{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{3;1;\pm\sqrt{3}\right\}\)

d) Ta có: \(x^5-5x^3+4x=0\)

\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^3-4x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\cdot x\left(x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\\x=\pm2\end{matrix}\right.\)

Vậy: x∈{-2;-1;0;1;2}

e) Ta có: \(x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=1\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: x∈{-1;1;2}

22 tháng 2 2020

ai giúp mình câu (a) với ạ

NV
22 tháng 2 2020

ĐKXĐ: \(x\ne\pm\frac{3}{2}\)

\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)

6 tháng 8 2020

a) 2x^2 + 3 = 2x(x + 4) - 7

<=> 2x^2 + 3 = 2x^2 + 8x - 7

<=> 2x^2 - 2x^2 - 8x = - 7 - 3

<=> -8x = -10

<=> x = -10/-8 = 5/4

b) 4x^2 - 12x + 5 = 0

<=> 4x^2 - 2x - 10x + 5 = 0

<=> 2x(2x - 1) - 5(2x - 1) = 0

<=> (2x - 5)(2x - 1) = 0

<=> 2x - 5 = 0 hoặc 2x - 1 = 0

<=> x = 5/2 hoặc x = 1/2

c) |5 - 2x| = 1 - x
<=> \(\hept{\begin{cases}5-2x\text{ nếu }5-2x\ge0\Leftrightarrow x\ge\frac{5}{2}\\-\left(5-2x\right)\text{ nếu }5-2x< 0\Leftrightarrow x< \frac{5}{2}\end{cases}}\)

+) nếu x >= 5/2, ta có:

5 - 2x = 1 - x

<=> -2x + 1 = 1 - 5

<=> -x = -4

<=> x = 4 (tm)

+) nếu x < 5/2, ta có:

-(5 - 2x) = 1 - x

<=> -5 + 2x = 1 - x

<=> 2x + 1 = 1 + 5

<=> 3x = 6

<=> x = 2 (ktm)

d) \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}-\frac{2x+3}{x^2+x+1}\) ; ĐKXĐ: x # 1 

<=> \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x+3}{x^2+x+1}\)

<=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

<=> 2(x^2 + x + 1) = (2x - 1)(2x + 1) - (2x + 3)(x - 1)

<=> 2x^2 + 2x + 2 = 2x^2 - x + 2

<=> 2x^2 - 2x^2 + 2x - x = 2 - 2

<=> x = 0

8 tháng 8 2020

mạn phép vô đây để kiếm câu trả lời 

\(2x^2+3=2x\left(x+4\right)-7\)

\(< =>2x^2+3=2x.x+4.2x-7\)

\(< =>2x^2+3=2x^2+8x-7\)

\(< =>2x^2+3-2x^2=8x-7\)

\(< =>\left(2x^2-2x^2\right)-8x=-7-3\)

\(< =>-8x=-10< =>8x=10\)

\(< =>x=10:8=\frac{10}{8}=\frac{5}{4}\)

2 tháng 5 2019

f, 3x2+4x-4=0

\(\Leftrightarrow\)3x2+6x-2x-4=0

\(\Leftrightarrow\)3x(x+2)-2(x+2)=0

\(\Leftrightarrow\)(x+2)(3x-2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)

Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)

27 tháng 5 2020

ĐK: x khác 1; - 1

\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)

<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)

<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)

<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)

<=> \(2x=4\)

<=> x = 2 thỏa mãn.