\(x^4-30x^2+31x-30=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018
https://i.imgur.com/XKNhQza.jpg
3 tháng 4 2018

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4-5x^3+5x^3-25x^2-5x+25x+6x-30=0\)

\(\Leftrightarrow\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)

\(\Leftrightarrow x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

4 tháng 3 2015

= x^4+x^2+1-31x^2+31x-31

= (x^2+x+1)(x^2-x+1)-31(x^2-x+1)

= (x^2-x+1)(x^2+x+1-31)

= (x^2-x-1)(x^2+x-30)

 =  (x^2-x+1)(x^2+6x-5x-30)

=    (x^2-x+1)(x-5)(x+6)

9 tháng 2 2017

vũ mạnh phi sai ở dấu = thứ  ấy là cộng 1 chớ ko phải trừ 1

3 tháng 5 2019

a, Đặt \(x^2-5x=a\)

\(\Rightarrow\)\(a^2+10a+24=0\)

\(\Rightarrow a^2+4a+6a+24=0\)

\(\Rightarrow\left(a+4\right)\left(a+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+4=0\\a+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2-5x+4=0\left(1\right)\\x^2-5x+6=0\left(2\right)\end{cases}}}\)

Giải pt (1) ta có : \(x^2-5x+4=0\)

\(\Rightarrow x^2-4x-x+4=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Giải pt (2) ta có : \(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

Vậy \(S=\left\{1;2;3;4\right\}\)

3 tháng 5 2019

\(x^4-30x^2+31x-30=0\)

\(\Rightarrow x^4-30x^2+x+30x-30=0\)

\(\Rightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)\)

\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

Mà \(x^2-x+1>0\)với \(\forall\)\(x\)

\(\Rightarrow x^2+x-30=0\)

\(\Rightarrow x^2-5x+6x-30=0\)

\(\Rightarrow x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy \(S=\left\{5;-6\right\}\)

31 tháng 7 2018

\(x^4-30x^2+31x-30=0\)

<=>\(x^4-30x^2+30x+x-30=0\)

<=>\(\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

<=>\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

<=>\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

<=>\(\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

<=>\(\left(x^2-x+1\right)\left[\left(x^2+6x\right)-5\left(x+30\right)\right]=0\)

<=>\(x^2\left(-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)

<=>\(\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)

=>\(x+6=0hoặcx-5=0\)\(\left[x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\)

<=> x=-6 hoặc x=5

Vậy......

27 tháng 1 2018

Câu hỏi của trần thị anh thư - Toán lớp 8 - Học toán với OnlineMath

28 tháng 1 2018

   x4-30x2+31x-30=0
<=>x4+x-30x2+30x-30=0
<=>x(x3+1)-30(x2-x+1)=0
<=>x(x+1)(x2-x+1)-30(x2-x+1)=0
<=>(x2-x+1)(x2+x-30)=0
<=>(x2-x+1)(x2-5x+6x-30)=0
<=>(x2-x+1)[x(x-5)+6(x-5)]=0
<=>(x2-x+1)(x-5)(x+6)=0
Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x
Do đó: <=>x-5 =0    <=> x=5
                x+6=0           x=-6
Vậy phương trình có tập nghiệm là S={5;-6}

P/S: kham khảo

11 tháng 7 2017

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0\)

\(\Leftrightarrow x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^3+5x^2-5x+6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^3+6x^2-x^2-6x+x+6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left(x+6\right)\left(x-5\right)=0\)

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow\left[{}\begin{matrix}x+6=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-6\\x=5\end{matrix}\right.\)

Vậy x = -6 hoặc x = 5

11 tháng 7 2017

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4-30x^2+30x-30+x=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+1=0\\x^2+x-30=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vl\right)\\\left(x-5\right)\left(x+6\right)=0\end{matrix}\right.\)

=> x = 5 hoặc x = -6.

p/s: ***** = vô lý :V

9 tháng 12 2018

\(x^4-30x^2+31x-30=0\)

\(\left(x^4+x\right)-30\left(x^2-x+1\right)=0\)

\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow x^2+x-30=0\left(x^2-x+1\ne0\right)\)

\(\left(x^2-5x\right)+\left(6x-30\right)=0\)

\(x\left(x-5\right)+6\left(x-5\right)=0\)

\(\left(x-5\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

9 tháng 12 2018

Thanks bạn nha

22 tháng 11 2017

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-5x+6x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[\left(x^2-5x\right)+\left(6x-30\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x-5\right)+6\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\x-5=0\\x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(loai\right)\\x=5\\x=-6\end{matrix}\right.\)

Vậy x=5 hoặc x=-6