K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

+) Với x < -1

pt <=> x2 + 2x + 5( x + 1 ) + 5 = 0

<=> x2 + 7x + 10 = 0

<=> x2 + 2x + 5x + 10 = 0

<=> x( x + 2 ) + 5( x + 2 ) = 0

<=> ( x + 2 )( x + 5 ) = 0

<=> x = -2 hoặc x = -5 (tm)

+) Với x ≥ -1

pt <=> x2 + 2x - 5( x + 1 ) + 5 = 0

<=> x2 - 3x = 0

<=> x( x - 3 ) = 0

<=> x = 0 (tm) hoặc x = 3 (tm)

Vậy tập nghiệm của phương trình là S = { -5 ; -2 ; 0 ; 3 }

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

13 tháng 2 2017

CHỊU!@@@@@@@@@@@@

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

15 tháng 8 2018

a) \(\orbr{\begin{cases}x-5=0\\x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=0\end{cases}}\)

b) \(\Leftrightarrow x^2-2x+1=0\)

<=> (x - 1)2 = 0

<=> x -1 = 0 

<=> x = 1

7 tháng 5 2020

sssssssssssAZ

9 tháng 1 2018

         \(\left(3x+2\right)\left(x-5\right)=\left(2x-5\right)\left(3x+2\right)\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5\right)-\left(2x-5\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5-2x+5\right)=0\)

\(\Leftrightarrow\)\(-x\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

Vậy...

        \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(2x-1+2-x\right)=0\)

\(\Leftrightarrow\)\(\left(2x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

Vậy...

9 tháng 1 2018

(3x+2)(x-5) = (2x-5)(3x+2)\(\Rightarrow\)x-5 = 2x-5 \(\Rightarrow\)3x = 0 \(\Rightarrow\)x = 0

(2x-1)2 + (2-x)(2x-1) = 0 \(\Rightarrow\)( 2x - 1 )( 2x - 1 + 2 - x ) \(\Rightarrow\)( 2x - 1 )( x + 1 ) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)

9 tháng 2 2018

a) \(2\left(x+5\right)-x^2-5x=0\)

\(2\left(x+5\right)-x\left(x+5\right)=0\)

\(\left(2-x\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2-x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

b) \(2x^2+3x-5=0\)

\(2x^2-2x+5x-5=0\)

\(2x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(2x+5\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=1\end{cases}}\)

c) \(\left(x-1\right)^2+4\left(x+2\right)-\left(x^2-3\right)=0\)

\(x^2-2x+1+4x+8-x^2+3=0\)

\(2x+12=0\)

\(2x=-12\)

\(x=-6\)

9 tháng 2 2018

a) \(2x+10-x^2-5x=0.\)

\(2\left(x+5\right)-x\left(x+5\right)=0\)

\(\left(x+5\right)\left(2-x\right)=0\)

\(x=-5:x=2\)

b)\(2x^2-5x+2x-5\)

\(x\left(2x-5\right)+\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x+1\right)=0\)

vậy ?

c) \(x^2-2x+1+4x+8-x^2+3=0\)

    \(\left(x^2-x^2\right)-\left(2x-4x\right)+\left(1+8+3\right)=0\)

\(2x+12=0\Rightarrow x=-6\)

25 tháng 2 2017

a, Đặt \(2^x=t,t>0\)

Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)

Nếu t=2 => x=1

nếu t=8=> x=3

Vậy x=...

b, Đặt: \(2x^2-3x-1=t\)

pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)

* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

Vậy x=...

6 tháng 2 2018

a, <=> (x-1).(x-6) = 0

<=> x=1 hoặc x=6

b, <=> (x+1).(2x-5) = 0

<=> x=-1 hoặc x=5/2

c, <=> (2x-5).(2x-1) = 0

<=> x=5/2 hoặc x=1/2

d, <=> (x^2-x+1).(x^2+1) = 0

=> pt vô nghiệm vì x^2-x+1 và x^2+1 đều > 0

Tk mk nha

6 tháng 2 2018

a) x2 - 7x + 6 = 0

<=> x2 - 6x - x + 6 = 0

<=>( x - 6 ) ( x - 1 ) = 0

<=> x - 6 = 0 hoặc x - 1 = 0

1. x - 6 = 0

<=> x = 6

2. x - 1 = 0

<=> x = 1

Vậy ......

b) 2x2 - 3x - 5 = 0

<=> 2x2 + 2x - 5x - 5 = 0

<=> ( x + 1 ) ( 2x - 5 ) = 0

<=> x + 1 = 0 hoặc 2x - 5 = 0

1. x + 1 = 0

<=> x = -1

2. 2x - 5 = 0

<=> x = 2.5

Vậy ............

c) 4x2 - 12x + 5 = 0

<=> 4x2 - 2x - 10x + 5 = 0

<=> 2x ( 2x - 1 ) - 5( 2x - 1 ) = 0

<=> ( 2x - 1 ) ( 2x - 5 ) = 0

<=> 2x - 1 = 0 hoặc 2x - 5 = 0

1. 2x - 1 = 0

<=> x = 0.5

2. 2x - 5 = 0

<=> x = 2.5

Vậy ....................

d) x4 - x3 + 2x2 - x + 1 = 0