K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

\(\Delta=7^2-4.3=28\Rightarrow\Delta=\sqrt{28}=2\sqrt{7}\)\(\Rightarrow\orbr{\begin{cases}x_1=\frac{7-2\sqrt{7}}{2}\\x_2=\frac{7+2\sqrt{7}}{2}\end{cases}}\)

5 tháng 2 2018

\(x^3+x^2+7x+7=\sqrt{\left(3-x\right)^3}\)

\(\Leftrightarrow x^2\left(x+1\right)+7\left(x+1\right)=\sqrt{\left(3-x\right)^3}\)

\(\Leftrightarrow\left(x^2+7\right)\left(x+1\right)-\sqrt{\left(3-x\right)^3}=0\)

( Em chưa học lớp 9 nên chỉ biết tới đây thôi ạ!)

22 tháng 8 2017

Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có

\(a^2+a-20=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)

\(\Leftrightarrow x^2+7x-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)

19 tháng 10 2020

\(x^2+7x+\sqrt{x^2+7x+8}=12\)

ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)

Đặt \(t=x^2+7x\)

pt \(\Leftrightarrow t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)\(-8\le t\le12\))

Bình phương hai vế

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-24t+144-t-8=0\)

\(\Leftrightarrow t^2-25t+136=0\)(*)

\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)

\(\Rightarrow x^2+7x=8\)

\(\Rightarrow x^2+7x-8=0\)

\(\Rightarrow x^2-x+8x-8=0\)

\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)

Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)

29 tháng 7 2016

xin lỗi mình mới 8 lên 9 thôi chưa học loại này

30 tháng 7 2016

k có ai giúp được ạ

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v