K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

tự kết luận nhé 

a,\(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-1-1\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4-x-5\right)=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

\(x+4-x-5\ne0\Leftrightarrow0x\ne1\)

19 tháng 2 2021

a) \(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=2\)

b) \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)

\(\Leftrightarrow x-3=0\)

\(\Rightarrow x=3\)

18 tháng 5 2021

\(2x^2+3x-5=0\)

\(< =>2x^2-2x+5x-5=0\)

\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(2x+5\right)=0\)

\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

18 tháng 5 2021

\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)

1 tháng 2 2021

cấy pt dạng ni lớp 8 học rồi mà :v 

chỉ là thêm công thức nghiệm vào thôi ._.

1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0

<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0

<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0

Đặt t = x2 + 10x + 16

pt <=> t( t + 8 ) + 16 = 0

<=> t2 + 8t + 16 = 0

<=> ( t + 4 )2 = 0

<=> ( x2 + 10x + 16 + 4 )2 = 0

<=> ( x2 + 10x + 20 )2 = 0

=> x2 + 10x + 20 = 0

Δ' = b'2 - ac = 25 - 20 = 5

Δ' > 0 nên phương trình có hai nghiệm phân biệt

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)

\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)

Vậy ...

2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0

<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0

<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0

Đặt t = x2 + 5x + 4

pt <=> t( t + 2 ) - 24 = 0

<=> t2 + 2t - 24 = 0

<=> ( t - 4 )( t + 6 ) = 0

<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0

<=> x( x + 5 )( x2 + 5x + 10 ) = 0

Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm

=> x = 0 hoặc x = -5

Vậy ...

3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0

<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0

<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0

Đặt t = x2 - 8x + 7

pt <=> t( t + 8 ) - 20 = 0

<=> t2 + 8t - 20 = 0

<=> ( t - 2 )( t + 10 ) = 0

<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0

<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0

<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)

+) x2 - 8x + 5 = 0

Δ' = b'2 - ac = 16 - 5 = 11

Δ' > 0 nên có hai nghiệm phân biệt 

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)

\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)

+) x2 - 7x + 18 = 0

Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm

Vậy ...

1 tháng 2 2021

1.(x+2) . (x+4) . (x+6) . (x+8) + 16 = 0

(x+2) . (x+4) . (x+6) . (x+8)         = -16

x. ( 2 + 4 + 6 + 8 )                    = -16

x. 20                                         = -16

x4                                                          = -16 : 20 

x                                               = -4 / 5       

x                                                  = \(\sqrt[4]{\frac{-4}{5}}\)

Tk cho mình nhé !!

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

18 tháng 5 2021

1.      \(2x^2-3x-5=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)

Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)

18 tháng 5 2021

2x2-3x-5=0

2x2+2x-5x-5=0

2x(x+1)+5(x+1)=0

(x+1)(2x+5)=0

TH1 x+1=0 <=>x=-1

TH2 2x+5=0<=>2x=-5<=>x=-5/2

2. ta có:

2(x-2y)-(2x+y)=-1.2-8

2x-4y-2x-y=-2-8

-5y=-10

y=2

thay vào 

x-2y=-1 ( với y=2)

<=> x-2.2=-1

x-4=-1

x=3