\(|x+1|+|x^2+x-2|=x^3-x^2+x-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

4 tháng 4 2020

ĐK: x \(\ne\)-1; x \(\ne\)2

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)

<=>  x2 - 4 + 3x + 3 = 3 + x2 - x - 2

<=> x2 + 3x - x2 + x = 1 + 1

<=> 4x = 2

<=> x = 1/2

Vậy S = {1/2}

7 tháng 7 2018

a)

\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.

7 tháng 7 2018

b) ĐKXĐ \(x\le3\)

\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.

Tậm nghiệm S = {1}

Tham khảo tại đây nha bạn: https://olm.vn/hoi-dap/detail/245875521207.html

9 tháng 3 2020

\(\frac{x-1}{2}\left(x-2\right)=\frac{x-1}{2}\left(x+3\right)\)

\(\Leftrightarrow\frac{x-1}{2}\left(x-2\right)-\frac{x-1}{2}\left(x+3\right)=0\)

\(\Leftrightarrow\frac{x-1}{2}\left(x-2-x-3\right)=0\)

\(\Leftrightarrow\frac{x-1}{2}\cdot\left(-5\right)=0\)

\(\Leftrightarrow\frac{x-1}{2}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy x=1

<=> \(\frac{x^2-3x+2}{2}=\frac{x^2+2x-3}{2}\)

=> x2 - 3x + 2 = x2 + 2x - 3

<=> 5x = 5

<=> x = 1

Vậy S = {1}

\(\frac{x-1}{2}\left(x-2\right)=\frac{x-1}{2}\left(x+3\right)\)

\(\frac{\left(x-1\right)\left(x-2\right)}{2}=\frac{\left(x-1\right)\left(x+3\right)}{2}\)

\(\left(x-1\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)

\(x^2-2x-x+2=x^2+3x-x-3\)

\(x^2-3x+2=x^2+3x-x-3\)

\(x^2+3x+2=2x-3\)

\(-3x+2=2x-3\)

\(2=2x-3+3x\)

\(2=5x-3\)

\(5x=5\Leftrightarrow x=1\)

6 tháng 6 2020

Bàii làm

a) ( x - 2 )( x - 3 ) = x2 - 4

<=> x2 - 2x - 3x + 6 = x2 - 4

<=> x2 - x2 - 5x + 6 - 4 = 0

<=> -5x + 2 = 0

<=> -5x = -2

<=> x = 2/5

Vậy x = 2/5 là nghiệm phương trình.

b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x+6}{x\left(x-2\right)}\)

=> x( x + 2 ) - ( x - 2 ) = x + 6

<=> x2 + 2x - x + 2 - x - 6 = 0

<=> x2 - 4 = 0

<=> x2 = 4

<=> x = + 4

Vậy nghiệm S = { + 4 }

c) \(\frac{2x-1}{-3}>1\)

\(\Leftrightarrow\frac{2x-1}{-3}.\left(-3\right)< 1\left(-3\right)\)

\(\Leftrightarrow2x-1< -3\)

\(\Leftrightarrow2x< -2\)

\(\Leftrightarrow x< -1\)

Vậy nghiệm bất phương trình S = { x / x < -1 }

d) ( x - 1 )2 < 5 - 2x

<=> x2 - 2x + 1 < 5 - 2x

<=> x2 - 2x + 1 - 5 + 2x < 0

<=> x2 - 4 < 0

<=> x2 < 4

<=> x < + 2

Vậy tập nghiệm S = { x / x < +2 }

13 tháng 4 2020

a) \(ĐKXĐ:x\ne\pm3\)

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

b) \(x^2-1=\left|x+1\right|\)(1)

TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)

\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)

(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)

\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

So sánh với ĐK ta thây không có giá trị nào của x thoả mãn

TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)

\(\Rightarrow\left|x+1\right|=x+1\)

(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)

\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn

Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)

13 tháng 4 2020

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)

\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x-1=0

<=> x=1 (tmđk)

10 tháng 2 2020

\(ĐKXĐ:x\inℝ\)

\(\frac{2x}{x^2-x+1}-\frac{x}{x^2+x+1}=\frac{5}{3}\)

\(\Leftrightarrow\frac{2x}{x^2-x+1}-\frac{x}{x^2+x+1}-\frac{5}{3}=0\)

\(\Leftrightarrow\frac{6x\left(x^2+x+1\right)-3x\left(x^2-x+1\right)-5\left(x^4+x^2+1\right)}{3\left(x^4+x^2+1\right)}=0\)

\(\Leftrightarrow6x^3+6x^2+6x-3x^3+3x^2-3x-5x^4-5x^2-5=0\)

\(\Leftrightarrow-5x^4+3x^3+4x^2+3x-5=0\)

\(\Leftrightarrow-5x^4+5^3-2x^3+2x^2+2x^2-2x+5x-5=0\)

\(\Leftrightarrow-5x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-5x^3-2x^2+2x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-5x^3+5x^2-7x^2+7x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[-5x^2\left(x-1\right)-7x\left(x-1\right)-5\left(x-1\right)\right]=0\)

\(\Leftrightarrow-\left(x-1\right)^2\left(5x^2+7x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x^2+7x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x^2+\left(2x+\frac{7}{4}\right)^2+\frac{31}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1\right\}\)