\(x-\frac{5x+2}{6}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

\(\Rightarrow12x-2.\left(5x+2\right)=3.\left(17-3x\right)\)

\(\Rightarrow12x-10x-4=51-9x\)

\(\Rightarrow11x=55\Rightarrow x=5\)

Vậy x = 5

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

16 tháng 1 2019

a, \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)

\(\frac{12x}{12}-\frac{2\left(5x+2\right)}{12}=\frac{3\left(7-3x\right)}{12}\)

\(12x-10x-4=21-9x\)

\(11x=25\)

\(x=\frac{24}{11}\)

\(b,\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

\(\frac{10x+3}{12}=\frac{15+8x}{9}\)

\(9\left(10x+3\right)=12\left(15+8x\right)\)

\(3\left(10x+3\right)=4\left(8x+15\right)\)

\(30x+9=32x+60\)

\(-2x=51\)

\(x=-\frac{51}{2}\)

\(c,\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\frac{2x}{6}-\frac{3\left(2x+1\right)}{6}=\frac{x-6x}{6}\)

\(2x-6x-3=x-6x\)

\(x=3\)

P/s: Bn xem lại đề bài phần d nha!

=.= hk tốt!!

16 tháng 1 2019

câu d sao bn đề đúng r ạ

31 tháng 3 2020

17) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)

18) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)

19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)

 \(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow x=-4\)(TM)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

20) \(ĐKXĐ:x\ne0\)

 \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow x^4+x-x^4+x-3=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)

1 tháng 7 2019

Giải :

\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)

\(\Leftrightarrow\frac{2\left(5x-2\right)+6x}{6}=\frac{6+3\left(5-3x\right)}{6}\)

\(\Leftrightarrow10x-4+6x=6+15-9x\)

\(\Leftrightarrow10x+6x+9x=6+15+4\)

\(\Leftrightarrow25x=25\Leftrightarrow x=1\).

Vậy tập nghiệm của phương trình đã cho là : S = {1}.

1 tháng 7 2019

Một cách khác dài dòng hơn :)

\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)

\(\Leftrightarrow\frac{5}{3}x+\frac{-2}{3}+x=1+\frac{5}{2}+\frac{-3}{2}x\)

\(\Leftrightarrow\left(\frac{5}{3}x+x\right)+\left(\frac{-2}{3}\right)=\left(\frac{-3}{2}x\right)+\left(1+\frac{5}{2}\right)\)

\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}=\frac{-3}{2}x+\frac{7}{2}\)

\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}+\frac{3}{2}x=\frac{7}{2}\)

\(\Leftrightarrow\frac{25}{6}x+\frac{-2}{3}=\frac{7}{2}\)

\(\Leftrightarrow\frac{25}{6}x=\frac{7}{2}+\frac{2}{3}\)

\(\Leftrightarrow\frac{25}{6}x=\frac{25}{6}\)

\(\Leftrightarrow x=\frac{25}{6}:\frac{25}{6}=1\)

=> x = 1

21 tháng 6 2020

a) 8x - 3 = 5x + 12

<=> 8x - 5x = 12 + 3

<=> 3x = 15

<=> x = 5

b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2

<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)

=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)

<=> -x^2 + 2x = x^3 - 2x^2

<=> -x^2 + 2x - x^3 + 2x^2 = 0

<=>  x^3 - x^2 - 2x = 0

<=> x(x + 1)(x - 2) = 0

<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0

<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)

Vậy: phương trình có tập nghiệm: S = {0; -1}

c) |x - 5| = 3x + 1

Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)

+) Nếu x > 5, ta có phương trình:

x - 5 = 3x + 1

<=> x - 3x = 1 + 5

<=> -2x = 6

<=> x = -3 (ktm)

+) Nếu x < 5, ta có phương trình:

-(x - 5) = 3x + 1

<=> -x + 5 = 3x + 1

<=> -x - 3x = 1 - 5

<=> -4x = -4

<=> x = 1 (tm)

Vậy: phương trình có tập nghiệm: S = {1}

25 tháng 12 2019

a) \(\left(x-5\right)^2+\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-5+x+5\right)=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

b) \(\frac{x-2}{4}+\frac{2x-3}{3}=\frac{x-18}{6}\)

\(\Rightarrow\frac{3x-6}{12}+\frac{8x-12}{12}=\frac{2x-36}{12}\)

\(\Rightarrow\frac{11x-18}{12}=\frac{2x-36}{12}\)

\(\Rightarrow11x-18=2x-36\)

\(\Rightarrow11x-2x=18-36\)

\(\Rightarrow9x=-18\Rightarrow x=-2\)

c) \(\frac{1}{x-3}+\frac{x-3}{x+3}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-6x+9}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x^2-5x+12}{x^2-9}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow x^2-5x+12=5x-6\)

\(\Rightarrow x^2-10x+18=0\)

Giải biệt thức sẽ ra 2 nghiệm \(5+\sqrt{7}\)và \(5-\sqrt{7}\)

27 tháng 12 2019

Gửi Cool: Lần sau đừng quên tìm điều kiện nhé. Câu c. ĐK: x khác 3 và x khác -3