\(\sqrt{x}\)+ 4 + \(\sqrt{x+16}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)

\(\Leftrightarrow x+1+x+16+2.\sqrt{\left(x+1\right).\left(x+16\right)}=x+4+x+9+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow2x+17+2.\sqrt{\left(x+1\right).\left(x+16\right)}=2x+13+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow4+2.\sqrt{\left(x+1\right)\left(x+16\right)}=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow2.\left(2+\sqrt{\left(x+1\right)\left(x+16\right)}\right)=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow\sqrt{x^2+17x+16}+1=\sqrt{x^2+13x+36}\)

Bình phương 2 vế ta được 

\(x^2+17x+16+1+2.\sqrt{x^2+17x+16}=x^2+13x+36\)

\(\Leftrightarrow2.\sqrt{x^2+17x+16}=-4x+19\)

Bình phương 2 vế ta được 

\(2x^2+34x+32=16x^2-152x+361\)

\(\Leftrightarrow14x^2-186x+329=0\)

\(\Delta=\left(-186\right)^2-4.14.329=16172\)

\(x_1=\frac{186-\sqrt{16172}}{26}=2,262723898\)

\(x_2=\frac{186+\sqrt{16172}}{26}=12,04496841\)

22 tháng 8 2020

\(\sqrt{x+1}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\) 

\(\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)  

\(x+1+x+16+2\sqrt{\left(x+1\right)\left(x+16\right)}=x+4+x+9+2\sqrt{\left(x+4\right)\left(x+9\right)}\)     

\(2x+17+2\sqrt{x^2+17x+16}=2x+13+2\sqrt{x^2+13x+36}\) 

\(4+2\sqrt{x^2+17x+16}=2\sqrt{x^2+13x+36}\)   

\(2+\sqrt{x^2+17x+16}=\sqrt{x^2+13x+36}\) 

\(\left(2+\sqrt{x^2+17x+16}\right)^2=\left(\sqrt{x^2+13x+36}\right)^2\)             

\(4+x^2+17x+16+4\sqrt{x^2+17x+16}=x^2+13x+36\) 

\(4\sqrt{x^2+17x+16}=-4x+16\) 

\(\sqrt{x^2+17x+16}=-x+4\)          

\(\hept{\begin{cases}-x+4\ge0\\x^2+17x+16=\left(-x+4\right)^2\end{cases}}\)    

\(\hept{\begin{cases}-x\ge-4\\x^2+17x+16=x^2-8x+16\end{cases}}\) 

\(\hept{\begin{cases}x\le4\\25x=0\end{cases}}\)  

\(\hept{\begin{cases}x\le4\\x=0\end{cases}}\)      

\(\Rightarrow x=0\) 

29 tháng 10 2020

a) \(\sqrt{x^2-6x+9}=3\)

⇔ \(\sqrt{\left(x-3\right)^2}=3\)

⇔ \(\left|x-3\right|=3\)

⇔ \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)

b) \(\sqrt{x^2-8x+16}=x+2\)

⇔ \(\sqrt{\left(x-4\right)^2}=x+2\)

⇔ \(\left|x-4\right|=x+2\)

⇔ \(\orbr{\begin{cases}x-4=x+2\left(x\ge4\right)\\4-x=x+2\left(x< 4\right)\end{cases}\Leftrightarrow}x=1\)

c) \(\sqrt{x^2+6x+9}=3x-6\)

⇔ \(\sqrt{\left(x+3\right)^2}=3x-6\)

⇔ \(\left|x-3\right|=3x-6\)

⇔ \(\orbr{\begin{cases}x-3=3x-6\left(x\ge3\right)\\3-x=3x-6\left(x< 3\right)\end{cases}}\Leftrightarrow x=\frac{9}{4}\)

d) \(\sqrt{x^2-4x+4}-2x+5=0\)

⇔ \(\sqrt{\left(x-2\right)^2}-2x+5=0\)

⇔ \(\left|x-2\right|-2x+5=0\)

⇔ \(\orbr{\begin{cases}x-2-2x+5=0\left(x\ge2\right)\\2-x-2x+5=0\left(x< 2\right)\end{cases}}\Leftrightarrow x=3\)

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v

13 tháng 7 2019

a) ĐKXĐ : \(x\ge-1\) 

\(\sqrt{16x+16}-\sqrt{9x+9}=4\)\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=4\)

\(\Leftrightarrow\sqrt{x+1}=4\Leftrightarrow x+1=16\Leftrightarrow x=15\)

b) ĐKXĐ : \(x\ge\frac{2}{3}\)

\(\sqrt{3x-2}-\sqrt{x+7}=1\Leftrightarrow3x-2+x+7-2\sqrt{3x-2}.\sqrt{x+7}=1\)

\(\Leftrightarrow4x+4-2\sqrt{3x^2+19x-14}=0\)\(\Leftrightarrow2x+2-\sqrt{3x^2+19x-14}=0\)

\(\Leftrightarrow2x+2=\sqrt{3x^2+19x-14}\Leftrightarrow\left(2x+2\right)^2=3x^2+19x-14\)

\(\Leftrightarrow4x^2+8x+4=3x^2+19x-14\Leftrightarrow x^2-11x+18=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=2\end{cases}\left(tm\right)}\)

c) câu cuối bình phương tương tự câu b

2 tháng 11 2019

Ai hack nick mình thì trả lại đi !!!

nick : 

  • Tên: Vô danh
  • Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
  • Địa chỉ: Huyện Điện Biên - Điện Biên
  • Điểm hỏi đáp: 112SP, 0GP
  • Điểm hỏi đáp tuần này: 47SP, 0GP
  • Thống kê hỏi đáp

​​Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn 

Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick 

Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !

LInk : https://olm.vn/thanhvien/lehoangngantoanhoc

19 tháng 9 2017

Cc mày

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

9 tháng 7 2019

\(\sqrt{25x^2-10x+1}=4x+9\)

\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)

\(\Leftrightarrow\left|5x-1\right|=4x+9\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)

Vậy ... 

9 tháng 7 2019

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)

Vậy ...

20 tháng 8 2019

\(a,\sqrt{x+1}=\sqrt{2-x}\)

\(\Rightarrow x+1=2-x\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

21 tháng 10 2020

a) \(ĐKXĐ:-1\le x\le2\)

Bình phương 2 vế ta có: 

\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )

Vậy \(x=\frac{1}{2}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )

Vậy \(x=65\)

c) \(ĐKXĐ:x\ge1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )

Vậy \(x=5\)