\(x-2\sqrt{13x}+13=52\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(x-2\sqrt{13x}+13=52\)

\(\left(\sqrt{x}\right)^2-2\sqrt{x}\sqrt{13}+\left(\sqrt{13}\right)^2=52\)

\(\left(\sqrt{x}-\sqrt{13}\right)^2=52\)

\(\sqrt{x}-\sqrt{13}=\sqrt{52}\)

\(\sqrt{x}=\sqrt{52}+\sqrt{13}\)

\(\sqrt{x}=3\sqrt{13}\)

\(x=117\)

5 tháng 8 2016

\(pt\Leftrightarrow\left(x-3\right)^2-7\left(x-3\right)-4\sqrt{x-3}+20=0\)

\(a=\sqrt{x-3}\ge0\)

\(pt\rightarrow a^4-7a^2-4a+20=0\)

\(\Leftrightarrow\left(a-2\right)^2\left(a^2+4a+5\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left[\left(a+2\right)^2+1\right]=0\)

\(\Leftrightarrow a=2\)

\(\Rightarrow x=a^2+3=7\)

4 tháng 7 2017

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)

\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)

\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)

\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)

Pt trong ngoặc VN suy ra x=2

4 tháng 7 2017

a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)

\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)

\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)

\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)

pt trong căn vô nghiệm

suy ra x=1; x=-1

22 tháng 1 2020

Ta viết lại phương trình thành:

\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)

Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:

\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\) 

Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)

Trường hợp 1: \(a=b\) ta có:

\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)

Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)

\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)

Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)

22 tháng 1 2020

sai r bạn ak

24 tháng 12 2017

ta có Pt <=> \(\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(x-1\right)^2+4}=\sqrt{13}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(1-x\right)^2+2^2}=\sqrt{13}\)

Áp dụng bđt min-côp-xki, ta có

\(\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(1-x\right)^2+2^2}\ge\sqrt{\left(x+1+1-x\right)^2+\left(1+2\right)^2}\)

\(\Rightarrow VT\ge\sqrt{4+9}=\sqrt{13}\)

dấu = xảy ra <=> x=-1/3

24 tháng 12 2017

ta có PT

<=>\(\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(1-x\right)^2+4}=\sqrt{\sqrt{13}}\)

Áp dụng bđt min - côp xki ta có \(\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(1-x\right)^2+2^2}\ge\sqrt{\left(1+x+1-x\right)^2+\left(1+2\right)^2}=\sqrt{13}\)