\(\sqrt{x^2+x+1}=2x+\)\(\sqrt{x^2-x+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

dat a=\(\sqrt{x^2+x+1}\)    b=\(\sqrt{x^2-x+1}\) dk \(a,b\ge0\)

t a co he phuong trinh \(\hept{\begin{cases}a^2-b^2=2x\\a-b=2x\end{cases}}\) \(\Rightarrow a^2-b^2=a-b\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=0\)

voi a=b \(\sqrt{x^2+x+1}=\sqrt{x^2-x+1}\Rightarrow x^2+x+1=x^2-x+1\)

\(\Rightarrow x=0\)

vs a+b=1  ket hop vs a-b=2x \(\Rightarrow a=\frac{2x+1}{2}\) \(b=\frac{-2x+1}{2}\)

do \(a\ge0,b\ge0\Rightarrow\frac{-1}{2}\le x\le\frac{1}{2}\)

tu \(\sqrt{x^2+x+1}=\frac{2x+1}{2}\Rightarrow x^2+x+1=\frac{4x^2+4x+1}{4}\)

\(\Rightarrow4\left(x^2+x+1\right)=4x^2+4x+1\)

\(\Rightarrow\) ko co no nao tm

kl x=0 la no cua pt da cho

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
19 tháng 8 2017

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

19 tháng 8 2017

đúng nhưng b,c,d đâu

nếu vế phải là \(2\sqrt{2}\)thì làm như này: 

Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)

\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)

30 tháng 3 2020

\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)

ĐKXĐ: Tự tìm nhé.

\(\left(\sqrt{\sqrt{2}-1-x};\sqrt[4]{x}\right)\rightarrow\left(b;a\right)\)

Phương trình <=>  \(\hept{\begin{cases}a+b=\frac{1}{\sqrt[4]{2}}\\a^4+b^2=\sqrt{2}-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt[4]{2}}-a\\a^4+b^2=\sqrt{2}-1\left(2\right)\end{cases}}\)

(2) <=> \(a^4+a^2-\frac{2}{\sqrt[4]{2}}a+\frac{1}{\sqrt{2}}-\sqrt{2}+1=0\)

\(\Leftrightarrow\sqrt{2}a^4+\sqrt{2}a^2-2\sqrt[4]{2}a+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}\right)\left(\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}\right)=0\)

\(\Leftrightarrow a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}=0\)( vì \(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}>0\))

Tự làm tiếp nhé

30 tháng 3 2020

ĐK: \(x\ge\frac{1}{2}\)

\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

\(\Leftrightarrow\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)+2\left(2-x\right)\left(2+x\right)=\left(\sqrt{2x-1}-\sqrt{3}\right)\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)=\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)+\frac{2\left(2-x\right)}{\sqrt{2x-1}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(2-x\right)\left[\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\sqrt{2+x}+\frac{2}{\sqrt{2x-1}+\sqrt{3}}\right]=0\)

\(\Leftrightarrow x=2\)\(\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2+x\right)+\frac{2}{\sqrt{2x-1}+\sqrt{3}}>0\))

KL:...