\(\sqrt{x^2+24}-\sqrt{x^2+11}=2X-9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Đặt căn(x^2+24)=a;căn(x^2+11)=b

ta có a^2-b^2=13

a^2+b^2=2a^2+11

29 tháng 4 2016

cách đó dài

29 tháng 7 2018

1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)

<=> \(\sqrt{\left(x-10\right)^2}=10\)

<=> \(\left|x-10\right|=10\)

=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)

Vậy S = \(\left\{20;0\right\}\)

2) \(\sqrt{x +2\sqrt{x}+1}=6\)

<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)

<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)

<=> \(\left|\sqrt{x}+1\right|=6\)

=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)

Vậy S = \(\left\{25\right\}\)

3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)

<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)

<=> \(\left|x-3\right|=\sqrt{3}+1\)

=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)

Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)

29 tháng 7 2018

4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)

<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)

<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)

<=> \(\left|\sqrt{3x}+1\right|=5\)

=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)

5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)

<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)

<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)

Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)

6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)

<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)

<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)

<=> \(\left|\sqrt{6x}+2\right|=7\)

=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)

=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)

3 tháng 9 2016

b) cách khác:

\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)

\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)

\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)

\(\Leftrightarrow x=1\)

3 tháng 9 2016

b liên hợp hoặc cosi, đặt ẩn cx đc

23 tháng 7 2019

d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)

PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)

\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)

Vậy..

23 tháng 7 2019

e) Bài này cũng vậy, em nghĩ bình phương lên cho lẹ :D

ĐK: x>= 4

\(\left(x-4\right)+4\sqrt{x-4}=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x-4}=-4\left(L\right)\end{matrix}\right.\Rightarrow x=4\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

23 tháng 7 2019

a) \(\sqrt{x^2-6x+9}+x=11\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Rightarrow x-3+x=11\) 

\(\Rightarrow2x=14\Rightarrow x=7\) 

Vậy........

b) \(\sqrt{3x^2-4x+3}=1-2x\)

\(3x^2-4x+3=1-4x+4x^2\) 

\(3x^2-4x^2-4x+4x=-2\) 

\(-x^2=-2\) 

\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\) 

Vậy.........

23 tháng 7 2019

d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\) 

\(\Rightarrow2x-1=x-3\) 

\(\Rightarrow x=1-3\) 

\(\Rightarrow x=-2\) 

Vậy  x=-2