Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)
\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)
\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)
thay vào pt
\(t+\frac{t^2-17}{2}=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)
\(\Rightarrow x+\sqrt{17-x^2}=5\)
\(\Leftrightarrow\sqrt{17-x^2}=5-x\)
Với \(x< \sqrt{17}\) bình 2 vế ta có:
\(17-x^2=x^2-10x+25\)
\(\Leftrightarrow2x^2-10x+8=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)
dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)
Đk:\(0\le x\le\sqrt{17}\)
\(pt\Leftrightarrow\sqrt{17-x^2}-\left(-x+5\right)=\left(3-\sqrt{x}\right)^2-\left(-x+5\right)\)
\(\Leftrightarrow\frac{17-x^2-\left(x-5\right)^2}{\sqrt{17-x^2}-x+5}=x-6\sqrt{x}+9+x-5\)
\(\Leftrightarrow\frac{-2\left(x-1\right)\left(x-4\right)}{\sqrt{17-x^2}-x+5}-2\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\frac{-2\left(x-1\right)\left(x-4\right)}{\sqrt{17-x^2}-x+5}-\frac{2\left(x-1\right)\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(\frac{-2}{\sqrt{17-x^2}-x+5}-\frac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\right)=0\)
Rõ ràng là \(\frac{-2}{\sqrt{17-x^2}-x+5}-\frac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}< 0\) (loại)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
b, ĐK \(x\ge-4\)
PT
<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)
<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)
Giải (2)
=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)
<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)
<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)
<=> \(x^2-7x-4=6\sqrt{x+4}\)
<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)
Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)
=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)
=> \(a^2-b^2+6\left(a-b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)
+ a=b
=> \(x-6=\sqrt{x+4}\)
=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)
+ a+b+6=0
=> \(x+\sqrt{x+4}=0\)(loại)
Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)
\(\sqrt[4]{x}+\sqrt[4]{17-x}=3\left(1\right)\)
Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\left(a\ge0\right)\\\sqrt[4]{17-x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^4+b^4=17\left(2\right)}\)
\(\left(1\right)\Leftrightarrow a+b=3\Leftrightarrow a=3-b\)
Thế vào (2) ta được
\(\left(2\right)\Leftrightarrow\left(3-b\right)^4+b^4=17\)
\(\Leftrightarrow2b^4-12b^3+54b^2-108b+64=0\)
\(\Leftrightarrow b^4-6b^3+27b^2-54b+32=0\)
\(\Leftrightarrow\left(b^4-2b^3\right)+\left(-4b^3+8b^2\right)+\left(19b^2-38b\right)+\left(-16b+32\right)=0\)
\(\Leftrightarrow\left(b-2\right)\left(b^3-4b^2+19b-16\right)=0\)
\(\Leftrightarrow\left(b-2\right)\left(\left(b^3-b^2\right)+\left(-3b^2+3b\right)+\left(16b-16\right)\right)=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-1\right)\left(b^2-3b+16\right)=0\)
Ta dễ dàng thấy rằng \(\left(b^2-3b+16\right)>0\)nên phương trình có 2 nghiệm là
\(\Leftrightarrow\orbr{\begin{cases}b=2\\b=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
Tới đây thì đơn giải rồi bạn chỉ việc thế số vô là ra nhé
Câu 1: Ta có
\(\sqrt{x}=\sqrt{17-12\sqrt{2}}=\sqrt{9-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Vậy thì \(f\left(x\right)=\frac{1-3+2\sqrt{2}+17-2\sqrt{2}}{3-2\sqrt{2}}=\frac{15}{3-2\sqrt{2}}=45+30\sqrt{2}\)
Câu 2: ĐK: \(0\le x\le1\)
\(pt\Leftrightarrow\sqrt{3x\left(x+1\right)}+\sqrt{x\left(1-x\right)}=2x+1\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(4x+2\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left[\left(3x+3\right)-\left(1-x\right)\right]\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left(\sqrt{3x+3}-\sqrt{1-x}\right)\)
\(\Leftrightarrow\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left[\sqrt{x}-\frac{1}{2}\left(\sqrt{3x+3}-\sqrt{1-x}\right)\right]=0\)
TH1: \(\sqrt{3x+3}+\sqrt{1-x}=0\Leftrightarrow\hept{\begin{cases}3x+3=0\\1-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\) (Vô lý)
TH2: \(2\sqrt{x}-\sqrt{3x+3}+\sqrt{1-x}=0\)
\(\Leftrightarrow2\sqrt{x}+\sqrt{1-x}=\sqrt{3x+3}\Leftrightarrow4x+1-x+4\sqrt{x\left(1-x\right)}=3x+3\)
\(\Leftrightarrow4\sqrt{x\left(1-x\right)}=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
Vậy phương trình có nghiệm \(x=\frac{1}{2}\)
\(\sqrt{x+17}+\sqrt{x}=17\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow\left(\sqrt{x+17}-9\right)+\left(\sqrt{x}-8\right)=0\)
\(\Leftrightarrow\frac{x+17-81}{\sqrt{x+17}+9}+\frac{x-64}{\sqrt{x}+8}=0\)
\(\Leftrightarrow\left(x-64\right)\left(\frac{1}{\sqrt{x+17}+9}+\frac{1}{\sqrt{x}+8}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=64\left(tm\right)\\\frac{1}{\sqrt{x+17}+9}+\frac{1}{\sqrt{x}+8}=0\left(1\right)\end{cases}}\)
Vì \(x\ge0\Rightarrow\hept{\begin{cases}\sqrt{x+17}+9>0\\\sqrt{x}+8>0\end{cases}}\)
\(\Rightarrow VT_{\left(1\right)}>0\)
\(\Rightarrow pt\left(1\right)\)vô nghiệm.
Vậy pt có nghiệm x=64