Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v
ĐKXĐ:\(x\ge\frac{1}{2}\)
Khi đó pt đã cho
\(\Leftrightarrow x-\sqrt{2x-1}+x+\sqrt{2x-1}\)+\(2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}=8\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=4\)
\(\Leftrightarrow x+|x-1|=4\) (1)
TH1:\(\frac{1}{2}\le x< 1\)
Khi đó pt (1)\(\Leftrightarrow x+1-x=4\)
\(\Leftrightarrow1=4\)(Vô lý)
TH2 :x\(\ge1\)
Khi đó pt (1) \(\Leftrightarrow x+x-1=4\)
\(\Leftrightarrow2x=5\)
\(\Leftrightarrow x=\frac{5}{2}\)(tm ĐKXĐ)
Vậy pt đã cho có tập nghiệm S=(\(\frac{5}{2}\))
ĐKXĐ : \(x\ge\frac{1}{2}\)
\(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow\)\(\left(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}\right)^2=\left(2\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(x-\sqrt{2x-1}+2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}+x+\sqrt{2x-1}=8\)
\(\Leftrightarrow\)\(x+\sqrt{x^2-2x+1}=4\)
\(\Leftrightarrow\)\(x+\left|x-1\right|=4\)
+) Với \(\hept{\begin{cases}x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(x+x-1=4\)
\(\Leftrightarrow\)\(x=\frac{5}{2}\) ( thỏa mãn )
Với \(\hept{\begin{cases}x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 1\end{cases}\Leftrightarrow}x< 0}\) ta có :
\(-x-x+1=4\)
\(\Leftrightarrow\)\(x=\frac{-3}{2}\) ( ko thỏa mãn ĐKXĐ )
Vậy \(x=\frac{5}{2}\)
Chúc bạn học tốt ~
a) Ta có pt \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\left|x-3\right|=\sqrt{3}+1...\)
b) Ta có pt \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=1\Leftrightarrow\left|x-1\right|+\left|x+2\right|=1\)
đến đây tự phá dấu trị tuyệt đối !
^_^
vế phải là sao z bn
nếu vế phải là \(2\sqrt{2}\)thì làm như này:
Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)
\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)