\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)

<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)

<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)

<=> x = 5

1 tháng 11 2017

ĐKXĐ : \(4\le x\le6\)

Xét \(VP^2=6-x+x-4+2\sqrt{\left(6-x\right)\left(x-4\right)}=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

Áp dụng bđt Cauchy ta có : \(2+2\sqrt{\left(6-x\right)\left(x-4\right)}\le2+6-x+x-4=4\)

\(\Rightarrow VP\le2\forall x\)(1)

Xét \(VT=x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\forall x\)(2)

Từ (1);(2) \(\Rightarrow VT\ge2\ge VP\)

Dấu "=" xảy ra \(\hept{\begin{cases}6-x=x-4\\\left(x-5\right)^2=0\end{cases}\Rightarrow x=5\left(TMĐKXĐ\right)}\)

Vậy nghiệm pt là x = 5

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

2 tháng 8 2015

a, \(\sqrt{2}x-\sqrt{6}=0\Leftrightarrow\sqrt{2}x=\sqrt{6}\Leftrightarrow x=\sqrt{3}\)

b, \(\frac{x^2}{\sqrt{3}}-\sqrt{12}=0\Leftrightarrow\frac{x^2}{\sqrt{3}}=\sqrt{12}\Leftrightarrow x^2=\sqrt{12}.\sqrt{3}\Leftrightarrow x^2=\sqrt{36}\Leftrightarrow x=36\)

c, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}x=\sqrt{12}+\sqrt{27}-\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}x=2\sqrt{3}+3\sqrt{3}-\sqrt{3}\Leftrightarrow\sqrt{3}x=4\sqrt{3}\Leftrightarrow x=4\)

1 tháng 6 2018

\(x+y+z-6046=2\sqrt{x-2019}+4\sqrt{y-2020}+6\sqrt{z-2021}\)

\(\left(x-2019\right)+\left(x-2020\right)+\left(x-2021\right)+1+4+9\)\(=2\sqrt{x-2019}+4\sqrt{y-2020}+6\sqrt{z-2021}\)

đặt :\(\hept{\begin{cases}\sqrt{x-2019}=a\\\sqrt{y-2020}=b\\\sqrt{z-2021}=c\end{cases}\left(đk:a,b,c\ge0\right)}\)

PT <=>  \(a^2+b^2+c^2+1+4+9=2a+4b+6c\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-6\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-2=0\\c-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}\left(tm\right)}}\)

\(\Rightarrow\hept{\begin{cases}x=2020\\y=2024\\z=2030\end{cases}}\)

12 tháng 9 2018

\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\) 

Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng) 

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\) 

Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại) 

Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại) 

Vậy Pt có nghiệm (1;-1)

11 tháng 10 2017

Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)

Dấu \(=\)xảy ra khi \(AB\ge0\)

11 tháng 10 2017

dat \(\sqrt{x-1}\) = t

ta có: \(\sqrt{x+3+4t}\)\(\sqrt{x+8-6t}\)= 5

     x + 3 + 4t + x + 8 - 6t = 25

   2x - 2t = 14 ( chia cả 2 vế cho 2)

   x - t = 7

   t = x - 7

  thay t = \(\sqrt{x}-1\)vào ta được:

 x - 7 = \(\sqrt{x-1}\)

( x - 7 )2 = x - 1

x2 -14x + 49 = x - 1

x- 15x + 50 = 0

​k biết đúng hay k