Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(4\le x\le6\)
Xét \(VP^2=6-x+x-4+2\sqrt{\left(6-x\right)\left(x-4\right)}=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)
Áp dụng bđt Cauchy ta có : \(2+2\sqrt{\left(6-x\right)\left(x-4\right)}\le2+6-x+x-4=4\)
\(\Rightarrow VP\le2\forall x\)(1)
Xét \(VT=x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\forall x\)(2)
Từ (1);(2) \(\Rightarrow VT\ge2\ge VP\)
Dấu "=" xảy ra \(\hept{\begin{cases}6-x=x-4\\\left(x-5\right)^2=0\end{cases}\Rightarrow x=5\left(TMĐKXĐ\right)}\)
Vậy nghiệm pt là x = 5
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
a, \(\sqrt{2}x-\sqrt{6}=0\Leftrightarrow\sqrt{2}x=\sqrt{6}\Leftrightarrow x=\sqrt{3}\)
b, \(\frac{x^2}{\sqrt{3}}-\sqrt{12}=0\Leftrightarrow\frac{x^2}{\sqrt{3}}=\sqrt{12}\Leftrightarrow x^2=\sqrt{12}.\sqrt{3}\Leftrightarrow x^2=\sqrt{36}\Leftrightarrow x=36\)
c, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}x=\sqrt{12}+\sqrt{27}-\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}x=2\sqrt{3}+3\sqrt{3}-\sqrt{3}\Leftrightarrow\sqrt{3}x=4\sqrt{3}\Leftrightarrow x=4\)
\(x+y+z-6046=2\sqrt{x-2019}+4\sqrt{y-2020}+6\sqrt{z-2021}\)
\(\left(x-2019\right)+\left(x-2020\right)+\left(x-2021\right)+1+4+9\)\(=2\sqrt{x-2019}+4\sqrt{y-2020}+6\sqrt{z-2021}\)
đặt :\(\hept{\begin{cases}\sqrt{x-2019}=a\\\sqrt{y-2020}=b\\\sqrt{z-2021}=c\end{cases}\left(đk:a,b,c\ge0\right)}\)
PT <=> \(a^2+b^2+c^2+1+4+9=2a+4b+6c\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-6\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-2=0\\c-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}\left(tm\right)}}\)
\(\Rightarrow\hept{\begin{cases}x=2020\\y=2024\\z=2030\end{cases}}\)
\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)
Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại)
Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại)
Vậy Pt có nghiệm (1;-1)
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k
pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)
<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)
<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)
<=> x = 5