\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

Lag tí -.-'

`ĐK:2<=x<=6`

BP 2 vế ta có:

`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`

`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`

`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`

`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`

Đặt `sqrt{-x^2+8x-12}=a(a>=0)`

`pt<=>a^2+2a-8=0`

`<=>a=2(tm),a=-4(l)`

`<=>-x^2+8x-12=4`

`<=>x^2-8x+16=0`

`<=>(x-4)^2=0<=>x=4(tmđk)`

Vậy `S={4}`

Học giỏi vậy bạn? $x^2-8x+24=(x-2).(x-6)$ ?? Well =)))

10 tháng 8 2019

ĐKXĐ: \(2\le x\le6\)

\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\\ \Leftrightarrow\left(\sqrt{x-2}+\sqrt{6-x}\right)^2=\left(\sqrt{x^2-8x+24}\right)^2\\ \Leftrightarrow x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\\ \Leftrightarrow4+2\sqrt{-x^2+8x-12}=x^2-8x+24\\ \Leftrightarrow-x^2+8x-20+2\sqrt{-x^2+8x-12}=0\left(1\right)\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\), ta có:

\(\left(1\right)\Leftrightarrow a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)

Ta có:

\(\sqrt{-x^2+8x-12}=2\Leftrightarrow-x^2+8x-12=4\\ \Leftrightarrow-x^2+8x-16=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x=4\left(tm\right)\)

Vậy....

P.s: Có gì sai mong mọi người góp ý!

#Lemon

10 tháng 8 2019

ĐK:....

\(pt\Leftrightarrow x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow4+2\sqrt{-x^2+8x-12}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(x^2-8x=a\)

\(pt\Leftrightarrow2\sqrt{-a-12}=a+20\)

\(\Leftrightarrow4\left(-a-12\right)=\left(a+20\right)^2\)

\(\Leftrightarrow a^2+40a+400+4a+48=0\)

\(\Leftrightarrow a^2+44a+448=0\)

\(\Leftrightarrow\left(a+16\right)\left(a+28\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-16\\a=-28\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+16=0\\x^2-8x+28=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\\left(x-4\right)^2+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\varnothing\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất \(x=4\)

3 tháng 10 2017

Áp dụng bđt Bunhia,ta có VT^2<=2(x-2+6-x)=8

suy ra VT<=\(2\sqrt{2}\)

Dấu "=" xảy ra khi \(\sqrt{x-2}=\sqrt{6-x}\) <=> x-2=6-x <=>x=4

Mặc khác \(\sqrt{x^2-8x+24}=\sqrt{\left(x-4\right)^2+8}>=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(x-4\right)^2\)=0 <=> x=4

Vậy pt đã cho có 1 nghiệm duy nhất là x=4

20 tháng 10 2017

a) ĐK: \(0\le x\le\frac{\sqrt{5}+1}{2}\)

\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)

\(\Leftrightarrow1-\sqrt{x^2-x}=\left(\sqrt{x}-1\right)^2\left(x\ge1\right)\)

\(\Leftrightarrow1-\sqrt{x^2-x}=x-2\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)}=2\sqrt{x}-x\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)}=\sqrt{x}\left(2-\sqrt{x}\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x-1}+\sqrt{x}-2=0\end{cases}}\)

TH1: x = 0 (Loại)

TH2: \(\sqrt{x-1}+\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x-1}=2-\sqrt{x}\)

\(\Leftrightarrow x-1=4-4\sqrt{x}+x\left(x\le4\right)\)

\(\Leftrightarrow4\sqrt{x}=5\Leftrightarrow\sqrt{x}=\frac{5}{4}\Leftrightarrow x=\frac{25}{16}\left(tm\right)\)

b) \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

ĐK: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(2x+6\right)}+\sqrt{\left(x+1\right)\left(x-1\right)}=2\left(x+1\right)\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}=0\end{cases}}\)

TH1: \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(l\right)\)

TH2: \(\sqrt{2x+6}=2\sqrt{x+1}-\sqrt{x-1}\)

\(\Leftrightarrow2x+6=4\left(x+1\right)+\left(x-1\right)-4\sqrt{x^2-1}\)

\(\Leftrightarrow2x+6=5x+3-4\sqrt{x^2-1}\)

\(\Leftrightarrow4\sqrt{x^2-1}=3x-3\Leftrightarrow16\left(x^2-1\right)=9x^2-18x+9\left(x\ge1\right)\)

\(\Leftrightarrow7x^2+18x-25=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-\frac{25}{7}\left(l\right)\end{cases}}\)

19 tháng 10 2017

dk tu xd \(\sqrt{2x^2+8x+6}\) \(+\sqrt{x^2-1}=2x+2\)

 \(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(2\sqrt{x+3}-\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

đến đây bn tự giải nhé

17 tháng 11 2016

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

17 tháng 11 2016

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)

17 tháng 7 2020

b) ĐK \(3\le x\le5\)(*)

Áp dụng BĐT Bunhiacopsky ta có: \(\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\cdot\left(x-3+5-x\right)}=\sqrt{4}=2\)

Dấu "=" xảy ra \(\Leftrightarrow x=4\)

Ta lại có \(a^2-8x+18=\left(x-4\right)+2\ge0\forall x\)

Dấu "=" xảy ra <=> x=4

\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\Leftrightarrow x=4\)

Với x=4 thỏa mãn điều kiện (*)

Vậy nghiệm của phương trình là x=4

a,

\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)

\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)

b,tự nàm

c,

\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)

\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)

đặt \(\sqrt{8x+1}=a\)

=>a4=10a2+64a+55

nhận thấy phương trình có dạng x4=ax2+bx+c

tìm số m sao cho b2-4(2m+a)(m2+c)=0

sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra

5 tháng 9 2017

b)đk \(x\ge1\)

 \(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)

\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)

\(\Leftrightarrow x+\left|x-2\right|=2014\)

giai 2 pt 

pt1 x+x-2=2014

x=1008

pt2 x+2-x=2014(vô lý)

27 tháng 2 2020

a) ĐK: \(x\ge-15\)

\(8x^2+16x-20-\sqrt{x+15}=0\)

<=> \(8x^2+16x-20=\sqrt{x+15}\)

=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)

<=> \(64x^4+256x^3-64x^2-641x+385=0\)

<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)

<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)

<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)

+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)

+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)

THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng

Vậy phương trình có hai nghiệm:....