\(\sqrt[4]{17-x^8}-\sqrt[3]{2x^8-1}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

\(DK:x\le\sqrt[8]{17}\)

\(\Leftrightarrow\left(\sqrt[4]{17-x^8}-2\right)+\left(1-\sqrt[3]{2x^8-1}\right)=0\)

\(\Leftrightarrow\frac{\sqrt{17-x^8}-4}{\sqrt[4]{17-x^8}+2}+\frac{2\left(1-x^8\right)}{1+\sqrt[3]{2x^8-1}+\left(\sqrt[3]{2x^8-1}\right)^2}=0\)

\(\Leftrightarrow\frac{1-x^8}{\left(\sqrt[4]{17-x^8}+2\right)\left(\sqrt{17-x^8}+4\right)}+\frac{2\left(1-x^8\right)}{1+\sqrt[3]{2x^8-1}+\left(\sqrt[3]{2x^8-1}\right)^2}=0\)

\(\Leftrightarrow\left(1-x^8\right)\left[\frac{1}{\left(\sqrt[4]{17-x^8}+2\right)\left(\sqrt{17-x^8}\right)}+\frac{1}{1+\sqrt[3]{2x^8-1}+\left(\sqrt[3]{2x^8-1}\right)}\right]=0\)

Vi \(\frac{1}{\left(\sqrt[4]{17-x^8}+2\right)\left(\sqrt{17-x^8}\right)}+\frac{2}{1+\sqrt[3]{2x^8-1}+\left(\sqrt[3]{2x^8-1}\right)^8}>0\left(\forall x\le\sqrt[8]{17}\right)\)

\(\Rightarrow x^8=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-1\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(x=-1\)

9 tháng 5 2016

Điều kiện : \(\begin{cases}x\ge\frac{1}{3}\\3x\in N\end{cases}\)

Từ phương trình ban đầu \(\Leftrightarrow\sqrt{2^x.2^{2.\frac{x}{3}}.\left(\frac{1}{8}\right)^{\frac{1}{3x}}}=2^2.2^{\frac{1}{3}}\)

                                     \(\Leftrightarrow2^{\frac{x}{2}}.2^{\frac{x}{3}}.2^{\frac{-1}{2x}}=2^{\frac{7}{3}}\)

                                     \(\Leftrightarrow2^{\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}}=2^{\frac{7}{3}}\)

                                     \(\Leftrightarrow\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}=\frac{7}{3}\)

                                     \(\Leftrightarrow5x^2-14x-3=0\)

                                      \(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)

Kết hợp với điều kiện ta có \(x=3\) là nghiệm của phương trình

6 tháng 5 2016

Bất phương trình : \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}>2^{\frac{3}{2}}.2^{-3}\)

                            \(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}>2^{\frac{3}{2}-3}\)

                            \(\Leftrightarrow x< \frac{62}{7}\)

Vậy bất phương trình có tập nghiệm là \(S=\left(-\infty;\frac{62}{7}\right)\)

NV
6 tháng 6 2020

ĐKXĐ: \(x^8\le17\)

Đặt \(\left\{{}\begin{matrix}\sqrt[4]{17-x^8}=a\ge0\\\sqrt[3]{2x^8-1}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\2a^4+b^3=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=a-1\\2a^4+b^3-33=0\end{matrix}\right.\)

\(\Leftrightarrow2a^4+\left(a-1\right)^3-33=0\)

\(\Leftrightarrow2a^4+a^3-3a^2+3a-34=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a^3+5a^2+7a+17\right)=0\)

\(\Leftrightarrow a=2\) (ngoặc sau luôn dương với \(a\ge0\))

\(\Leftrightarrow\sqrt[4]{17-x^8}=2\Leftrightarrow17-x^8=16\)

\(\Leftrightarrow x^8=1\Rightarrow x=\pm1\)

24 tháng 1 2016

*Với x\(\ge\)2 PT trở thành: x.(x-2)+(2x+5)=8

<=>x2-2x+2x+5=8

<=>x2=3

<=>\(x=\sqrt{3}\left(loại\right)\text{ hoặc }x=-\sqrt{3}\left(loại\right)\)

*Với \(-\frac{5}{2}\le x<2\) PT trở thành: x.(2-x)+(2x+5)=8

<=>2x-x2+2x+5=8

<=>-x2+4x-3=0

<=>-x2+3x+x-3=0

<=>-x.(x-3)+(x-3)=0

<=>(x-3)(1-x)=0

<=>x=3 (loại) hoặc x=1

*Với x<-5/2 PT trở thành: x.(2-x)-(2x+5)=8

<=>2x-x2-2x-5=8

<=>x2=-13 (vô lí)

Vậy S={1}

\(\sqrt{x+1}=5-\sqrt{2x+3}\)

ĐK: x\(\ge\)1

\(\sqrt{x+1}=5-\sqrt{2x+3}\Leftrightarrow\sqrt{2x+3}=5-\sqrt{x+1}\)

\(\Leftrightarrow2x+3=25-2\sqrt{x+1}+x+1\Leftrightarrow x-23=-2\sqrt{x+1}\)

\(\Leftrightarrow x^2-46x+529=4x+4\Leftrightarrow x^2-50+525\)

\(\Delta=400\Rightarrow\sqrt{\Delta}=20\)

\(\Delta>0,PT\text{ có 2 nghiệm pb: }x_1=35;x_2=15\)

Vậy S={15;35}

24 tháng 1 2016

\(\sqrt{x+1}+\sqrt{2x+3}=5 \Leftrightarrow x+1+2x+3+2\sqrt{2x^2+5x+3}=25\Leftrightarrow2\sqrt{2x^2+5x+3}=21-2x\)

\(4\left(2x^2+5x+3\right)=21^2-41x+4x^2\)

NV
27 tháng 11 2018

1/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-2.3\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=1\)

\(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\sqrt{x-1}\ge2\\\sqrt{x-1}\le3\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)

Vậy phương trình nghiệm đúng với mọi \(x\in\left[5;10\right]\)

2/ ĐKXĐ: \(x\ge\dfrac{5}{2}\)

Nhân 2 vế với \(\sqrt{2}\) ta được:

\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\sqrt{2x-5}+\left|\sqrt{2x-5}-1\right|=1\)

TH1: \(\sqrt{2x-5}\ge1\Rightarrow\sqrt{2x-5}+\sqrt{2x-5}-1=1\)

\(\Leftrightarrow\sqrt{2x-5}=1\Rightarrow2x=6\Rightarrow x=3\)

TH2: \(\sqrt{2x-5}< 1\Rightarrow\sqrt{2x-5}+1-\sqrt{2x-5}=1\Leftrightarrow1=1\) (đúng với mọi \(\dfrac{5}{2}\le x< 3\))

Vậy nghiệm của phương trình là \(\dfrac{5}{2}\le x\le3\)

15 tháng 10 2019

Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

@Nguyễn Việt Lâm

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

3 tháng 12 2017

a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)

\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)

\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)

pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)

\(\Leftrightarrow t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)

suy ra tìm đc x

3 tháng 12 2017

câu b đặt t =\(3x^2+5x+8\)

ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)

\(\Rightarrow t=16\)

\(\Leftrightarrow3x^2+5x+8=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)