Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐK x >= 5/3
pt <=> \(2+\sqrt{3x-5}=x+1\)
=> \(\sqrt{3x-5}=x-1\)
=> \(3x-5=x^2-2x+1\)
=> \(x^2-5x+6=0\)
=> \(\left(x-2\right)\left(x-3\right)=0\)
=> x= 2 hoặc x = 3
Vậy x = 2 ; 3 là n* của pt
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
a/ ĐKXĐ: \(2\le x\le10\)
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}-x^2+12x-20-20=0\)
Đặt \(\sqrt{x-2}+\sqrt{10-x}=a>0\)
\(\Rightarrow a^2=8+2\sqrt{-x^2+12x-20}\Rightarrow-x^2+12x-20=\frac{\left(a^2-8\right)^2}{4}\)
Phương trình trở thành:
\(a+\frac{\left(a^2-8\right)^2}{4}-20=0\Leftrightarrow a^4-16a^2+4a-16=0\)
\(\Leftrightarrow a^2\left(a-4\right)\left(a+4\right)+4\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a^3+4a^2+4\right)=0\)
\(\Leftrightarrow a=4\) (do \(a^3+4a^2+4>0\) \(\) \(\forall a>0\))
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}=4\)
Mà \(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=10-x\Leftrightarrow x=6\)
b/ ĐKXĐ:...
Ta có:
\(VT=1.\sqrt{x^2+x-1}+1.\sqrt{x-x^2+1}\le\frac{1+x^2+x-1}{2}+\frac{1+x-x^2+1}{2}=x+1\)
\(\Rightarrow x^2-x+2\le x+1\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt