Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)
\(\Rightarrow b^4+a^4=2\)
Từ đó ta có: a + b = 2
Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)
Dấu = xảy ra khi a = b = 1
=> x = 1
a/ \(\sqrt{2x-3}=\sqrt{x-1}ĐK:x\ge\dfrac{3}{2}\)
\(\Leftrightarrow2x-3=x-1\Leftrightarrow x=-1+3=2\)(tm)
b/ \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)ĐK: x≥1
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow\sqrt{x-1}\left(6-3-2+1\right)=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\Leftrightarrow\sqrt{x-1}=8\Leftrightarrow x-1=64\Leftrightarrow x=65\)
(tm)
c/ \(\sqrt{2x+3}+\sqrt{2x+2}=1\)ĐK: x>=-1
\(\Leftrightarrow\sqrt{2x+3}=1-\sqrt{2x+2}\)
\(\Leftrightarrow2x+3=2x+2-2\sqrt{2x+2}+1\)
\(\Leftrightarrow2\sqrt{2x+2}=0\Leftrightarrow\sqrt{2x+2}=0\Leftrightarrow2x+2=0\Leftrightarrow x=-1\left(tm\right)\)
d/ \(\sqrt{4x^2+4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=3\Leftrightarrow\left|2x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy....
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
tự tìm đkxđ
\(\sqrt[3]{2x+4}=\sqrt[3]{2x-1}+\sqrt[3]{5}\)
\(\Leftrightarrow2x+4=2x-1+5+3\sqrt[3]{10x-5}\left(\sqrt[3]{2x-1}+\sqrt[3]{5}\right)\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt{5}\left(\sqrt[3]{2x-1}+\sqrt[3]{5}\right)=0\)
\(\Leftrightarrow x=\frac{1}{2}\text{ hoặc }x=-2\)
thhahghlihygliwerysio