Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực hiện các phép biến đổi để đưa các phương trình đã cho về các phương trình tương đương có dạng ax+b=0 hoặc ax=-b,ta được:
a)5x-2/3=5-3x/2⇔2(5x-2)=3(5-3x)⇔10x-4=15-9x⇔10x+9x=15+4⇔19x=19⇔x=1
phương trình có 1 nghiệm x=1
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = - 3 + 2
⇔ x = - 1
Vậy phương trình có nghiệm duy nhất x = - 1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ - 2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ - x + 11 = 12 - 8x
⇔ - x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = \(\dfrac{1}{7}\)
Vậy phương trình có nghiệm duy nhất x = \(\dfrac{1}{7}\).
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = - 45 + 6x
⇔ 12x - 6x = - 45 + 9
⇔ 6x = -36
⇔ x = - 6
Vậy phương trình có nghiệm duy nhất x = - 6.
e) 0,1 - 2(0,5t - 0,1) = 2(t - 2,5) - 0,7
⇔ 0,1 - t + 0,2 = 2t - 5 - 0,7
⇔ -t + 0,3 = 2t - 5,7
⇔ - t - 2t = -5,7 - 0,3
⇔ - 3t = - 6
⇔ t = 2
Vậy phương trình có nghiệm duy nhất t = 2.
f) \(\dfrac{3}{2}\left(x-\dfrac{5}{4}-\dfrac{5}{8}\right)=x\)
\(\Leftrightarrow\dfrac{3}{2}x-\dfrac{15}{8}-\dfrac{5}{8}=x\\ \Leftrightarrow\dfrac{3}{2}x-x=\dfrac{15}{8}+\dfrac{5}{8}\\ \Leftrightarrow\dfrac{1}{2}x=\dfrac{20}{8}\\ \Leftrightarrow x=\dfrac{20}{8}:\dfrac{1}{2}\\ \Leftrightarrow x=5\)
Vậy phương trình có nghiệm duy nhất x = 5.
a)3x-2=2x-3
⇔3x-2x=-3+2
⇔x=-1
b)3-4u+24+6u=u+27+3u
⇔-4u+6u-u-3u=27-3-24
⇔-2u=0
⇔u=0
c)5-(x-6)=4(3-2x)
⇔5-x+6=12-8x
⇔-x+8x=12-5-6
⇔7x=1
⇔x=1/7
d)-6(1,5-2x)=3(-15+2x)
⇔-9+12x=-45+6x
⇔12x-6x=-45+9
⇔6x=-36
⇔x=-6
a) \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}=\dfrac{x}{6}=\dfrac{6x}{6}\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=x-6x\)
\(\Leftrightarrow2x-6x-x+6x=3\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
b) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{10x}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{5}{20}\)
\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Leftrightarrow8+4x-10x=5-10x+5\)
\(\Leftrightarrow4x-10x+10x=5+5-8\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
\(S=\left\{\dfrac{1}{2}\right\}\)
a) ĐKXĐ: x # -5
\(\dfrac{2x-5}{x+5}=3\) ⇔ \(\dfrac{2x-5}{x+5}=\dfrac{3\left(x+5\right)}{x+5}\)
⇔ 2x - 5 = 3x + 15
⇔ 2x - 3x = 5 + 20
⇔ x = -20 thoả ĐKXĐ
Vậy tập hợp nghiệm S = {-20}
b) ĐKXĐ: x # 0
\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(x^2+6\right)}{2x}=\dfrac{2x^2+3x}{2x}\)
Suy ra: 2x2 – 12 = 2x2 + 3x ⇔ 3x = -12 ⇔ x = -4 thoả x # 0
Vậy tập hợp nghiệm S = {-4}.
c) ĐKXĐ: x # 3
\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\) ⇔ x(x + 2) - 3(x + 2) = 0
⇔ (x - 3)(x + 2) = 0 mà x # 3
⇔ x + 2 = 0
⇔ x = -2
Vậy tập hợp nghiệm S = {-2}
d) ĐKXĐ: x # \(-\dfrac{2}{3}\)
\(\dfrac{5}{3x+2}=2x-1\Leftrightarrow\dfrac{5}{3x+2}=\dfrac{\left(2x-1\right)\left(3x+2\right)}{3x+2}\)
⇔ 5 = (2x - 1)(3x + 2)
⇔ 6x2 – 3x + 4x – 2 – 5 = 0
⇔ 6x2 + x - 7 = 0
⇔ 6x2 - 6x + 7x - 7 = 0
⇔ 6x(x - 1) + 7(x - 1) = 0
⇔ (6x + 7)(x - 1) = 0
⇔ x = \(-\dfrac{7}{6}\) hoặc x = 1 thoả x # \(-\dfrac{2}{3}\)
Vậy tập nghiệm S = {1;\(-\dfrac{7}{6}\)}.
a)ĐKXĐ:x≠-5
Khử mẫu:2x-5=3(x+5) (1)
giải phương trình (1),ta được:
(1)⇔2x-5=3x+15
⇔2x-3x=15+5
⇔-x=20⇔x=-20(TM)
vậy phương trình đã cho có nghiệm x=-20