Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+6=\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
1, <=>x^2-x-2 = x^2-4
<=>x^2-4-x^2+x+2 = 0
<=> x-2 = 0
<=> x=2
2, <=> (x-2).(x-3)=0
<=> x-2 = 0 hoặc x-3 = 0
<=> x=2 hoặc x=3
a,(x + 6)(3x +1) + x+6 = 0
(x+6)(3x +2)=0
x= -6
x= -2/3
b, x= -4 hoăc x =-8/5
a,(x+6)(3x+1)+x+6=0
=>(x+6)(3x+2)=0
=>x+6=0 hoặc 3x+2=0
=>x=-6 hoặc x=-2/3
b,(x+4)(5x+9)-x-4=0
=>(x+4)(5x+8)=0
=>x+4=0 hoặc 5x+8=0
=>x=-4 hoặc x=-8/5
\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x+1+x-1\right)\left(x+1-x+1\right)=6\left(x^2+x+1\right)\)
\(\Leftrightarrow2x.2=6x^2+6x+6\)
\(\Leftrightarrow4x=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2x+6=0\)
Ta có \(\Delta=2^2-4.6.6< 0\)
Vậy pt vô nghiệm
\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)
\(\Leftrightarrow\left[\left(x+1\right)-\left(x-1\right)\right].\left[\left(x+1\right)+\left(x-1\right)\right]=6\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=6x^2+6x+6\)
\(\Leftrightarrow2.2x=6x^2+6x+6\)\(\Leftrightarrow4x=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2x+6=0\)\(\Leftrightarrow3x^2+x+3=0\)( vô nghiệm vì \(1^2< 4.3.3\)hay \(1< 36\))
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
(x2 + x + 1)(6 - 2x) = 0
<=> 6 - 2x = 0 (do x2 + x + 1 > 0)
<=> 2x = 6
<=> x = 3
Vậy S = {3}
(8x - 4)(x2 + 2x + 2) = 0
<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)
<=> 8x = 4
<=> x = 1/2
Vậy S = {1/2}
x3 - 7x + 6 = 0
<=> x3 - x - 6x + 6 = 0
<=> x(x2 - 1) - 6(x - 1) = 0
<=> x(x - 1)(x + 1) - 6(x - 1) = 0
<=> (x2 + x - 6)(x - 1) = 0
<=> (x2 + 3x - 2x - 6)(x - 1) = 0
<=> (x + 3)(x - 2)(x - 1) = 0
<=> x + 3 = 0
hoặc x - 2 = 0
hoặc x - 1 = 0
<=> x = -3
hoặc x = 2
hoặc x = 1
Vậy S = {-3; 1; 2}
x5 - 5x3 + 4x = 0
<=> x(x4 - 5x2 + 4) = 0
<=> x(x4 - x2 - 4x2 + 4) = 0
<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0
<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0
<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1
Vậy S = {-2; -1; 0; 1; 2}
+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
- Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)
Vậy \(S=\left\{3\right\}\)
+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
- Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)
- Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
+ Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)
Vậy \(S=\left\{-3;1;2\right\}\)
+ Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)
\(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow x=0\left(TM\right)\)
hoặc \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)
hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)
Vậy \(S=\left\{-2;-1;0;1;2\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
\(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy ...
\(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(4x^2+4x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)