Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\text{ĐK: }....\Leftrightarrow x\le-3\text{ hoặc }x\ge0\)
+TH1: \(x\ge0\)
\(pt\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\text{ (1)}\)
\(\left(1\right)\Leftrightarrow x+1+x+2+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)
\(\Leftrightarrow x+2\sqrt{\left(x+1\right)\left(x+2\right)}=0\text{ (vô nghiệm do }x\ge0\text{ nên }x+\sqrt{\left(x+1\right)\left(x+2\right)}>0\text{)}\)
\(+TH2:\text{ }x\le-3\)
\(pt\Leftrightarrow\sqrt{-x}\left(\sqrt{-x-1}+\sqrt{-x-2}-\sqrt{-x-3}\right)=0\)
\(\Leftrightarrow\sqrt{-x-1}+\sqrt{-x-2}=\sqrt{-x-3}\text{ }\left(do\text{ }x\le-3\Rightarrow\sqrt{-x}>\sqrt{3}\right)\)
\(\Leftrightarrow-x-1-x-2+2\sqrt{\left(-x-1\right)\left(-x-2\right)}=-x-3\)
\(\Leftrightarrow2\sqrt{\left(-x-1\right)\left(-x-2\right)}-x=0\text{ (vô nghiệm do }-x\ge3\text{)}\)
Vậy \(x=0\)
b/
\(\text{ĐK: }x\ge1\)
\(\text{Đặt }\sqrt{x-1}=t;\text{ }t\ge0\)
\(pt\text{ thành: }\left(t+1\right)^3+2t+t^2-1=0\)
\(\Leftrightarrow t^3+4t^2+5t=0\Leftrightarrow t\left(t^2+4t+5\right)=0\)
\(\Leftrightarrow t=0\vee t^2+4t+5=0\text{ (Vô nghiệm)}\)
\(pt\text{ đã cho }\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x=1\)
Điều kiện tự làm nha.
\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\left(1\right)\\\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}=0\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\)
\(\Leftrightarrow2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)
\(\Leftrightarrow2\sqrt{\left(x+1\right)\left(x+2\right)}=-x\)
Tới đây thì bình phương 2 vế rồi giải phương trình bậc 2 nhé
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)
a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt
\(\left(x^3-x-1\right)\left(\sqrt{x+1}-1\right)=1\)
\(Th1:x^3-x-1=1\Leftrightarrow x^3-x=2\Leftrightarrow x^3=2+x\)
\(\Leftrightarrow x^3-2-x=0\Leftrightarrow x.x.x-x=0+2\Leftrightarrow x^3-x=2\):v
\(\sqrt{x+1}-1=1\Leftrightarrow\sqrt{x+1}=2\Leftrightarrow\sqrt{x+1}=\sqrt{2}\)
\(\Leftrightarrow x+1=2\Leftrightarrow x=1\):v
\(Th2:x^3-x-1=-1\Leftrightarrow x^3-x=0\Leftrightarrow x^3=x\):v
\(\sqrt{x+1}-1=-1\Leftrightarrow\sqrt{x+1}=0\)
\(\sqrt{x+1}=\sqrt{0}\Leftrightarrow x+1=0\Leftrightarrow x=-1\):V