Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-4\right)-\left(4x^2+4x+1\right)-2x+3x^2=0\)
\(\Leftrightarrow\left(x^2+3x^2-4x^2\right)+\left(-4x-2x\right)+\left(-4-1\right)=0\)
\(\Leftrightarrow-6x-5=0\Leftrightarrow x=-\frac{5}{6}\)
Vậy nghiệm phương trình là \(x=-\frac{5}{6}\)
\(\left(x-2\right)\left(x+2\right)-\left(2x+1\right)^2=x\left(2-3x\right)\)
\(\Leftrightarrow x^2-4-\left(4x^2+4x+1\right)=2x-3x^2\)
\(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
\(\Leftrightarrow-5-6x=0\)
\(\Leftrightarrow-6x=5\Leftrightarrow x=\frac{-5}{6}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
\(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{\left(x-2\right)3\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
\(\frac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}=\frac{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\frac{2x+1}{x+2}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6
[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6
4x2 - 9 - 4 . ( x2 + 4x + 4) = 6
4x2 - 9 - 4x2 - 16x - 16 = 6
-16x -25 = 6
x = \(-\dfrac{31}{16}\)
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm
Phương pháp:
Xét x=0=>2.2=0, vô lý
Xét x<>=0. Chia cả 2 vế của pt cho x^2<>0. Đặt x +1+ 2/x=t.....
Biến đổi về pt bậc 2 ẩn t rồi giải t và tìm x là xong.
`Answer:`
`(x^2+x+2)(x^2+2x+2)=2x^2`
`<=>x^4+2x^3+2x^2+x^3+2x^2+2x+2x^2+4x+4=2x^2`
`<=>x^4+3x^3+4x^2+6x+4=0`
`<=>(x^4+x^3)+(2x^3+2x^2)+(2x^2+2x)+(4x+4)=0`
`<=>x^3 .(x+1)+2x^2 .(x+1)+2x.(x+1)+4.(x+1)=0`
`<=>(x+1)[x^2 .(x+2)]+2.(x+1)=0`
`<=>(x+1).(x+2).(x^2+2)=0`
Trường hợp 1: `x+1=0<=>x=-1`
Trường hợp 2: `x+2=0<=>x=-2`
Trường hợp 3: `x^2+2=0` (Vô lý)