\(\left(x^2-9\right)\left(9x^2-1\right)=20x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 6 2019

a/ ĐXĐK: ...

\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)

\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))

\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

d/

\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)

Đặt \(\sqrt{x^2+x+1}=a\)

\(\Leftrightarrow3x^2-5ax+2a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

12 tháng 3 2020

ĐK: \(\hept{\begin{cases}x\ge1\\x^2-20x+24\le0\end{cases}}\)

\(x^2-20x+24+8\sqrt{3\left(x-1\right)}=0\)

\(\Leftrightarrow2\left(x^2-20x+24+8\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow2x^2-32x+32+8\left(2\sqrt{3x-3}-x+2\right)=0\)

\(\Leftrightarrow2x^2-32x+32+8\left[2\sqrt{3x-3}-\left(x-2\right)\right]=0\)

\(\Leftrightarrow2x^2-32x+32+8\frac{4\left(3x-3\right)-\left(x-2\right)^2}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2x^2-32x+32+8\frac{12x-12-x^2+4x-4}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2\left(x^2-16x+16\right)-8\frac{x^2-16x+16}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow\left(x^2-16x+16\right)\left(2-\frac{8}{2\sqrt{3x-3}+x-2}\right)=0\)

Xét \(2-\frac{8}{2\sqrt{3x-3}+x-2}=0\)

\(\Leftrightarrow2\sqrt{3x-3}+x-6=0\)

\(\Leftrightarrow\left(2\sqrt{3x-3}\right)^2=\left(6-x\right)^2\)

\(\Leftrightarrow12x-12=x^2-12x+36\)

\(\Leftrightarrow0=x^2-24x+48\)

Tự làm tiếp nhé ~

6 tháng 10 2019

Đk: \(x\ge2\)

pt <=> \(\frac{4\left(x+2\right)-\left(4x+1\right)}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)

<=> \(\frac{7}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)

<=> \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)

Đặt : \(t=2\sqrt{x+2}+\sqrt{4x+1}\ge0\)

Ta có: \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)<=> \(2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\)

Phương trình (1)  trở thành: \(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=1\end{cases}\left(tm\right)}\)

+) Với t = 1. Ta có:

\(2\sqrt{x+2}+\sqrt{4x+1}=1\)

<=> \(8x+9+4\sqrt{4x^2+9x+2}=1\)

<=> \(\sqrt{4x^2+9x+2}=-2-2x\)

<=> \(\hept{\begin{cases}-2-2x\ge0\\4x^2+9x+2=4x^2+8x+4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le-1\\x=2\end{cases}}\)loại 

+) Với t = 3. Ta có:

\(2\sqrt{x+2}+\sqrt{4x+1}=3\)

<=> \(8x+9+4\sqrt{4x^2+9x+2}=9\)

<=> \(\sqrt{4x^2+9x+2}=-2x\)

<=> \(\hept{\begin{cases}-2x\ge0\\4x^2+9x+2=4x^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le0\\9x+2=0\end{cases}}\Leftrightarrow x=-\frac{2}{9}\left(tmdk\right)\)

Vây:...

11 tháng 5 2020

ĐK \(x\ge\frac{-1}{4}\)

Với điều kiện đó ta có \(2\sqrt{x+2}+\sqrt{4x+1}>0\)

Biến đổi phương trình đã cho trở thành

\(7\left(2x+3+\sqrt{4x^2+9x+2}\right)7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)

\(\Leftrightarrow2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(1\right)\)

Đặt \(t=2\sqrt{x+2}+\sqrt{4x+1}\left(t\ge\sqrt{7}\right)\)

\(t^2=8x+9+4\sqrt{4x^2+9x+2}\Rightarrow2x+\sqrt{4x^2+9x+2}=\frac{t^2-9}{4}\)

Thay vào (1) ta được \(t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=1\left(ktm\right)\\t=3\left(tm\right)\end{cases}}\)

Với t=3 ta có:\(2\sqrt{x+2}+\sqrt{4x+1}=3\)giải ra ta được \(x=\frac{-2}{9}\left(tm\right)\)

Vậy pt có 1 nghiệm duy nhất \(x=-\frac{2}{9}\)