\(\left(x^2-3x-9\right)^2-\left(3x-17\right)^2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

\(\Leftrightarrow\left(x^2-3x-9-3x+17\right)\left(x^2-3x-9+3x-17\right)=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2-26=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x^2=26\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x=\sqrt{26}\end{matrix}\right.\)

Vậy \(S=\left\{4;2;\sqrt{26}\right\}\)

11 tháng 4 2022

sai r bạn ơi

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

22 tháng 4 2017

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 3 2021

a)(2x+1)(3x-2)=(5x-8)(2x+1)

⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0

⇔(2x+1)(3x-2-5x+8)=0

⇔(2x+1)(-2x+6)=0

⇔2x+1=0 hoặc -2x+6=0

1.2x+1=0⇔2x=-1⇔x=-1/2

2.-2x+6=0⇔-2x=-6⇔x=3

phương trình có 2 nghiệm x=-1/2 và x=3

6 tháng 7 2017

Ta có : (x + 1)(x + 2)(x + 3)(x + 4) = 3x2

=> [(x + 1)(x + 4)][(x + 2)(x + 3)] = 3x2

=> (x2 + 5x + 4) (x2 + 5x + 6) = 3x2

Đặt x2 + 5x + 5 = a 

Thay vào biểu thức ta có : (a - 1)(a + 1) = 3x2

<=> a2 - 1 = 3a2

<=> (x+ 5x + 5)2 = 3x2

<=> x4 + 10x2 + 15 = 3x2

=> x+ 10x2 + 15 - 3x2 = 0

<=> x4 + 7x2 + 15 = 0

<=> (x2 + 3,5)2 + 2,75 = 0

=> sai đề 

12 tháng 2 2020

Đặt \(u=x^2-x\)

Phương trình trở thành \(u^2-4u+4=0\)

\(\Leftrightarrow\left(u-2\right)^2=0\)

\(\Leftrightarrow u-2=0\)

\(\Rightarrow x^2-x=2\)

\(\Rightarrow x^2-x-2=0\)

Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1+3}{2}=2\\x=\frac{1-3}{2}=-1\end{cases}}\)

12 tháng 2 2020

Đặt \(2x+1=w\)

Phương trình trở thành \(w^2-w=2\)

\(\Rightarrow\orbr{\begin{cases}w=2\\w=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=2\\2x+1=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

4 tháng 10 2019

PT\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)

\(\Leftrightarrow9x-10=0\)

\(\Leftrightarrow x=\frac{10}{9}\)

Vay nghiem cua PT la \(x=\frac{10}{9}\)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

2 tháng 3 2019

a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)

b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)

c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)

24 tháng 4 2019

a) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{13}{4}\end{cases}}\)

24 tháng 4 2019

b) \(\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

7 tháng 2 2020

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-5\\x=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)

Vậy .........

\(b,\left(x^2-4\right)+\left(x-2\right)\left(3-2x=0\right)\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)

Vậy ..................

\(c,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

\(d,x\left(2x-7\right)-4x+14=0\)

\(\Leftrightarrow2x^2-7x-4x+14=0\)

\(\Leftrightarrow2x^2-11x+14=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

Vậy ............

\(e,\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)

\(\Leftrightarrow3x^2-24x+21=0\)

\(\Leftrightarrow3\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy .....................

\(f,x^2-x-\left(3x-3\right)=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy ..............